<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Angle Measures in Given Quadrilaterals

Find missing angle measures of quadrilaterals given a sum of 360 degrees.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Angle Measures in Given Quadrilaterals
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Understanding the Angle Measures of Quadrilaterals

Let’s Think About It

Credit: InExtremiss
Source: https://www.flickr.com/photos/inextremiss/4595563587/in/photolist-816sWX-816swH-819BnW-7ZKL1M-7ZKAST-7ZNMPS-7ZNNHE-816rKz-7ZKBM2-7ZKCBk-816tnn-7ZKLti-7ZKLMz-7ZNY65
License: CC BY-NC 3.0

Stephanie, a Math 12 student, is helping to raise money to participate in this year’s Math Olympiad in Dallas, Texas. Since Stephanie is very artistic in making jewelry, she has decided to make and sell necklaces to raise money. Several customers have asked her what shape she has used for the blue bead of a particularly geometric looking necklace. She knows what shape it is but is not sure of how to explain this shape to her customers.

What can Stephanie tell her customers about this shape?

In this concept, you will learn to understand the angle measures of quadrilaterals.

Guidance

A quadrilateral is a two-dimensional closed shape that has four straight sides.

Three special quadrilaterals are a parallelogram which is a quadrilateral with opposite sides parallel and congruent, a trapezoid which is a quadrilateral that has one pair of opposite sides parallel and a kite which is a quadrilateral that has two pairs of congruent adjacent sides.

Three special parallelograms are a rectangle which has every angle a right angle and opposite sides both congruent and parallel, a square which has every angle a right angle, opposite sides parallel and all sides congruent and a rhombus which has every side equal in length, opposite sides parallel, but not every angle is a right angle.

Remember a quadrilateral is a two-dimensional closed shape that has four straight sides and four angles.

The sum of the interior angles of a quadrilateral is 360° regardless of the type of quadrilateral. The following diagram will show various quadrilaterals and their interior angles.

License: CC BY-NC 3.0

If you add the measure of the four interior angles of each quadrilateral shown above, the sum will equal 360°. Each of these quadrilaterals can be divided into two triangles. Remember the sum of the interior angles of a triangle equals 180°. If the closed figure contains two triangles then the sum of the interior angles equals \begin{align*}2(180^{\circ})= 360^\circ\end{align*}.

Let’s apply these facts to an example.

For the following quadrilateral, determine the measure of \begin{align*}\angle M\end{align*}.

License: CC BY-NC 3.0


First, write an equation to represent the sum of the interior angles of quadrilateral \begin{align*}JKLM\end{align*}.

\begin{align*}\angle J + \angle K + \angle L + \angle M = 360^\circ\end{align*}

Next, substitute into the equation, the given measures of angles \begin{align*}J, K\end{align*} and \begin{align*}L\end{align*}

\begin{align*}\begin{array}{rcl} \angle J + \angle K + \angle L + \angle M &=& 360^\circ \\ 77^\circ + 90^\circ + 128^\circ + \angle M &=& 360^\circ \end{array}\end{align*}

Next, simplify the left side of the equation.

\begin{align*}\begin{array}{rcl} 77^\circ + 90^\circ + 128^\circ + \angle M &=& 360^\circ \\ 295^\circ + \angle M &=& 360^\circ \end{array}\end{align*}

Then, subtract \begin{align*}295^\circ\end{align*} from both sides of the equation to solve for the measure of \begin{align*}\angle M\end{align*}.

\begin{align*}\begin{array}{rcl} 295^\circ + \angle M &=& 360^\circ \\ 295^\circ - 295^\circ + \angle M &=& 360^\circ - 295^\circ \\ \angle M &=& 65^\circ \end{array}\end{align*}
The answer is 65.

The measure of \begin{align*}\angle M\end{align*} is 65°.

This method can be used to calculate the measure of the missing angle of any quadrilateral when the measures of three of the angles are known.

Guided Practice

A quadrilateral \begin{align*}ABCD\end{align*} having one pair of opposite sides parallel has angle measures such that \begin{align*}\angle A = 44^\circ\end{align*}. Find the measure of \begin{align*}\angle C\end{align*} in the following quadrilateral.

License: CC BY-NC 3.0


First, name the type of quadrilateral and write down what you know.

A quadrilateral with one pair of opposite sides parallel is called a trapezoid. \begin{align*}\angle A\end{align*} and \begin{align*}\angle C\end{align*} are on the same side of leg \begin{align*}\angle AC\end{align*} and are supplementary.

Next, write an equation to model what you know about the two angles.

\begin{align*}\angle A + \angle C = 180^\circ\end{align*}

Next, fill into the equation the measure of \begin{align*}\angle A\end{align*}

\begin{align*}\begin{array}{rcl} \angle A + \angle C = 180^\circ \\ 44^\circ + \angle C = 180^\circ \end{array}\end{align*}

Then, subtract 44° from both sides of the equation to solve for \begin{align*}\angle C\end{align*}.

\begin{align*}\begin{array}{rcl} 44^\circ + \angle C &=& 180^\circ \\ 44^\circ - 44^\circ + \angle C &=& 180^\circ - 44^\circ \\ \angle C &=& 136^\circ \end{array}\end{align*}The answer is 136.

The measure of \begin{align*}\angle C\end{align*} is 136°.

Examples

Example 1

For the following quadrilateral, find the measure of the unknown angle.

License: CC BY-NC 3.0

First, write an equation to model the sum of the interior angles of a quadrilateral.

\begin{align*}\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^\circ\end{align*}

Next, fill into the equation the measures of any known angles.

\begin{align*}\begin{array}{rcl} \angle 1 + \angle 2 + \angle 3 + \angle 4 &=& 360^\circ \\ 105^\circ + 75 ^\circ + 60^\circ + \angle 4 &=& 360^\circ \end{array}\end{align*}

Next, let \begin{align*} \angle 4 = x\end{align*}

\begin{align*}\begin{array}{rcl} 105^\circ + 75 ^\circ + 60^\circ + \angle 4 &=& 360^\circ \\ 105^\circ + 75 ^\circ + 60^\circ + x &=& 360^\circ \end{array}\end{align*}

Next, simplify the left side of the equation.

\begin{align*}\begin{array}{rcl} 105^\circ + 75 ^\circ + 60^\circ + x &=& 360^\circ \\ 240^\circ + x &=& 360^\circ \end{array}\end{align*}

Next, subtract 240° from both sides of the equation to solve for \begin{align*}x\end{align*}’.

\begin{align*}\begin{array}{rcl} 240^\circ + x &=& 360^\circ \\ 240^\circ - 240^\circ + x &=& 360^\circ - 240^\circ \\ x &=& 120^\circ \end{array}\end{align*}

The answer is 120.

The measure of \begin{align*}\angle 4\end{align*} is 120°.

Example 2

What is the measure of the fourth angle of a quadrilateral which has three angles that measure 110°, 80° and 95°?

First, write an equation to model the sum of the interior angles of the quadrilateral.

\begin{align*}\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^\circ\end{align*}

Next, fill into the equation the measures of the three known angles. 

\begin{align*}\begin{array}{rcl} \angle 1 + \angle 2 + \angle 3 + \angle 4 &=& 360^\circ \\ 110^\circ + 95 ^\circ + 80^\circ + \angle 4 &=& 360^\circ \end{array}\end{align*}

Next, simplify the left side of the equation.

\begin{align*}\begin{array}{rcl} 110^\circ + 95 ^\circ + 80^\circ + \angle 4 &=& 360^\circ \\ 285^\circ + \angle 4 &=& 360^\circ \end{array}\end{align*}

Then, subtract 285° from both sides of the equation to solve for the measure of \begin{align*}\angle 4\end{align*}.

\begin{align*}\begin{array}{rcl} 285^\circ + \angle 4 &=& 360^\circ \\ 285^\circ - 285^\circ + \angle 4 &=& 360^\circ - 285^\circ \\ \angle 4 &=& 75^\circ \end{array}\end{align*}

Example 3

What is the name of the quadrilateral that has all sides equal in length, opposite sides parallel and every angle a right angle?

First, draw the quadrilateral to represent the information given in the problem.

License: CC BY-NC 3.0


Then, name the quadrilateral.

This is a special parallelogram called a square.

Follow Up

Credit: InExtremiss
Source: https://www.flickr.com/photos/inextremiss/4595565003/in/photolist-816tnn-nLfGSt-nLfGvB-nLf2JE-o3CkiJ-nLeQHH-o3CkoJ-o3r4gc-auWRuu-r2oDv2-nLfGrP-qGoD5p-8VyzNe-5xwxSb-eLoLxb-a4MAc4-eMn8HQ-eGrheu-7yFZ4n-9VfKGQ-9vvQuJ-dFmNZP-7mQxMt-4QX5Wx-eHmXLQ-4cmHbU-dwQkEG-dFoR78-7ZPczq-dFhDaV-dFo535-5kSQmF-qJXWio-dFo41W-NubBC-iiytfL-dQj65J-dQdtqT-9AtdXb-7hGf24-9cVB6e-6dFCZJ-cQofvh-9cVBcV-cQof89-bErkfy-c11zHu-bTm4x6-bTm4v6-9cYQBj
License: CC BY-NC 3.0

Remember Stephanie and her necklaces? She needs to figure out what to tell her customers about the shape of the blue bead. What can she tell them?

First, draw the shape and include all important markings.

License: CC BY-NC 3.0


Next, explain the markings on the sides of the shape.

The arrows on the top and bottom sides of the figure indicate that this pair of opposite sides are parallel. The tic mark on the other two sides indicate that these sides are congruent (equal in length).

Then, name the shape.

The shape of the blue bead is an isosceles trapezoid.

Explore More

Use what you have learned about quadrilaterals to figure out the missing angle measure of each quadrilateral based on three given angles.

  1. 120°, 120°, 60°, ?
  2. 50°, 70°, 130°, ?
  3. 52°, 128°,52°, ?
  4. 47°, 55°, 120°, ?
  5. 80°, 80°, 100°, ?
  6. 105°, 105°, 85°, ?
  7. 97°, 97°, 35°, ?
  8. 120°, 120°, 40°, ?
  9. 88°, 90°, 60°, ?
  10. 25°, 85°, 85°, ?
  11. 90°, 90°, 90°, ?
  12. 140°, 150°, 45°, ?
  13. 80°, 80°, 120°, ?
  14. 75°, 95°, 110°, ?
  15. 80°, 50°, 95°, ?

Vocabulary

Congruent

Congruent

Congruent figures are identical in size, shape and measure.
Parallelogram

Parallelogram

A parallelogram is a quadrilateral with two pairs of parallel sides.
Quadrilateral

Quadrilateral

A quadrilateral is a closed figure with four sides and four vertices.
Rectangle

Rectangle

A rectangle is a quadrilateral with four right angles.
Rhombus

Rhombus

A rhombus is a quadrilateral with four congruent sides.
Square

Square

A square is a polygon with four congruent sides and four right angles.
Trapezoid

Trapezoid

A trapezoid is a quadrilateral with exactly one pair of parallel opposite sides.

Explore More

Sign in to explore more, including practice questions and solutions for Angle Measures in Given Quadrilaterals.

Reviews

Please wait...
Please wait...

Original text