<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Congruence Statements

Learn how to write congruence statements and use congruence statements to determine the corresponding parts of triangles.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Congruence Statements
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Turn In
Congruence Statements

Congruence Statements

When stating that two triangles are congruent, the corresponding parts must be written in the same order. For example, if we know that \begin{align*}\triangle ABC\end{align*} and \begin{align*}\triangle LMN\end{align*} are congruent then we know that:

Notice that the congruent sides also line up within the congruence statement.

\begin{align*}\overline{AB} \cong \overline{LM}, \ \overline{BC} \cong \overline{MN}, \ \overline{AC} \cong \overline{LN}\end{align*}

We can also write this congruence statement five other ways, as long as the congruent angles match up. For example, we can also write \begin{align*}\triangle ABC \cong \triangle LMN\end{align*} as:

\begin{align*}&\triangle ACB \cong \triangle LNM && \triangle BCA \cong \triangle MNL && \triangle BAC \cong \triangle MLN\\ &\triangle CBA \cong \triangle NML && \triangle CAB \cong \triangle NLM && \end{align*}

What if you were told that \begin{align*}\triangle FGH \cong \triangle XYZ\end{align*}? How could you determine which side in \begin{align*}\triangle XYZ\end{align*} is congruent to \begin{align*}\overline{GH}\end{align*} and which angle is congruent to \begin{align*}\angle{F}\end{align*}?

 

 

Examples

Example 1

If \begin{align*}\triangle ABC \cong \triangle DEF\end{align*}, what else do you know?

From this congruence statement, we know three pairs of angles and three pairs of sides are congruent. \begin{align*} \angle{A} \cong \angle{D}, \angle{B} \cong \angle{E}, \angle{C} \cong \angle{F}\end{align*}, \begin{align*}\overline{AB} \cong \overline{DE}, \ \overline{BC} \cong \overline{EF}, \ \overline{AC} \cong \overline{DF}\end{align*}.

Example 2

If \begin{align*}\triangle KBP \cong \triangle MRS\end{align*}, what else do you know?

From this congruence statement, we know three pairs of angles and three pairs of sides are congruent. \begin{align*} \angle{K} \cong \angle{M}, \angle{B} \cong \angle{R}, \angle{P} \cong \angle{S}\end{align*}, \begin{align*}\overline{KB} \cong \overline{MR}, \ \overline{BP} \cong \overline{RS}, \ \overline{KP} \cong \overline{MS}\end{align*}.

Example 3

Write a congruence statement for the two triangles below.

Line up the corresponding angles in the triangles:

\begin{align*}\angle{R} \cong \angle{F}, \ \angle{S} \cong \angle{E}\end{align*}, and \begin{align*}\angle{T} \cong \angle{D}\end{align*}.

Therefore, one possible congruence statement is \begin{align*}\triangle RST \cong \angle{FED}\end{align*}

Example 4

If \begin{align*}\triangle CAT \cong \triangle DOG\end{align*}, what else do you know?

From this congruence statement, we know three pairs of angles and three pairs of sides are congruent.

Example 5

If \begin{align*}\triangle BUG \cong \triangle ANT\end{align*}, what angle is congruent to \begin{align*}\angle{N}\end{align*}?

Since the order of the letters in the congruence statement tells us which angles are congruent, \begin{align*}\angle{N} \cong \angle{U}\end{align*} because they are each the second of the three letters.

Review

For questions 1-4, determine if the triangles are congruent using the definition of congruent triangles. If they are, write the congruence statement.

  1. Suppose the two triangles below are congruent. Write a congruence statement for these triangles.
  2. Explain how we know that if the two triangles are congruent, then \begin{align*}\angle{B} \cong \angle{Z}\end{align*}.
  3. If \begin{align*}\triangle TBS \cong \triangle FAM\end{align*}, what else do you know?
  4. If \begin{align*}\triangle PAM \cong \triangle STE\end{align*}, what else do you know?
  5. If \begin{align*}\triangle INT \cong \triangle WEB\end{align*}, what else do you know?
  6. If \begin{align*}\triangle ADG \cong \triangle BCE\end{align*}, what angle is congruent to \begin{align*} \angle{G}\end{align*}?

Review (Answers)

To see the Review answers, open this PDF file and look for section 4.4. 

Resources

 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Congruence Statements.
Please wait...
Please wait...