<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Corresponding Angles

Angles in the same place with respect to a transversal, but on different lines.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Corresponding Angles
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Turn In
Corresponding Angles

Corresponding Angles 

Corresponding Angles are two angles that are in the “same place” with respect to the transversal, but on different lines. Imagine sliding the four angles formed with line \begin{align*}l\end{align*} down to line \begin{align*}m\end{align*}. The angles which match up are corresponding. \begin{align*}\angle 2\end{align*} and \begin{align*}\angle 6\end{align*} are corresponding angles.

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

If \begin{align*}l \ || \ m\end{align*} and both are cut by \begin{align*}t\end{align*}, then \begin{align*}\angle 1 \cong \angle 5, \ \angle 2 \cong \angle 6, \ \angle 3 \cong \angle 7\end{align*}, and \begin{align*}\angle 4 \cong \angle 8\end{align*}.

Converse of Corresponding Angles Postulate: If corresponding angles are congruent when two lines are cut by a transversal, then the lines are parallel.

 

Watch the portions of this video dealing with corresponding angles.

 

Investigation: Corresponding Angles Exploration

You will need: paper, ruler, protractor

  1. Place your ruler on the paper. On either side of the ruler, draw lines, 3 inches long. This is the easiest way to ensure that the lines are parallel.
  2. Remove the ruler and draw a transversal. Label the eight angles as shown.
  3. Using your protractor, measure all of the angles. What do you notice?

In this investigation, you should see that \begin{align*}m \angle 1 = m \angle 4 = m \angle 5 = m \angle 8\end{align*} and \begin{align*}m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7\end{align*}. \begin{align*}\angle 1 \cong \angle 4, \ \angle 5 \cong \angle 8\end{align*} by the Vertical Angles Theorem. By the Corresponding Angles Postulate, we can say \begin{align*}\angle 1 \cong \angle 5\end{align*} and therefore \begin{align*}\angle 1 \cong \angle 8\end{align*} by the Transitive Property.

Investigation: Creating Parallel Lines using Corresponding Angles

  1. Draw two intersecting lines. Make sure they are not perpendicular. Label them \begin{align*}l\end{align*} and \begin{align*}m\end{align*}, and the point of intersection, \begin{align*}A\end{align*}, as shown.
  2. Create a point, \begin{align*}B\end{align*}, on line \begin{align*}m\end{align*}, above \begin{align*}A\end{align*}.
  3. Copy the acute angle at \begin{align*}A\end{align*} (the angle to the right of \begin{align*}m\end{align*}) at point \begin{align*}B\end{align*}. See Investigation 2-2 in Chapter 2 for the directions on how to copy an angle.
  4. Draw the line from the arc intersections to point \begin{align*}B\end{align*}.

From this construction, we can see that the lines are parallel.

 

Making Conclusions about Lines 

If \begin{align*}m \angle 8 = 110^\circ\end{align*} and \begin{align*}m \angle 4 = 110^\circ\end{align*}, then what do we know about lines \begin{align*}l\end{align*} and \begin{align*}m\end{align*}?

\begin{align*}\angle 8\end{align*} and \begin{align*}\angle 4\end{align*} are corresponding angles. Since \begin{align*}m \angle 8 = m \angle 4\end{align*}, we can conclude that \begin{align*}l \ || \ m\end{align*}.

Measuring Angles

If \begin{align*}m \angle 2 = 76^\circ\end{align*}, what is \begin{align*}m \angle 6\end{align*}?

\begin{align*}\angle 2\end{align*} and \begin{align*}\angle 6\end{align*} are corresponding angles and \begin{align*}l \ || \ m\end{align*}, from the markings in the picture. By the Corresponding Angles Postulate the two angles are equal, so \begin{align*}m \angle 6 = 76^\circ\end{align*}.

Recognizing Corresponding Angles 

Using the picture above, list pairs of corresponding angles.

Corresponding Angles: \begin{align*}\angle 3\end{align*} and \begin{align*}\angle 7\end{align*}, \begin{align*}\angle 1\end{align*} and \begin{align*}\angle 5, \ \angle 4\end{align*} and \begin{align*}\angle 8\end{align*}

 

Watch this video beginning at the 4:50 mark.

 

Examples 

Lines \begin{align*}l\end{align*} and \begin{align*}m\end{align*} are parallel:

Example 1

If \begin{align*}\angle 1=3x+1\end{align*} and \begin{align*}\angle 5 = 4x-3\end{align*}, solve for x.

Since they are corresponding angles and the liens are parallel, they must be congruent. Set the expressions equal to each other and solve for \begin{align*}x\end{align*}\begin{align*}3x+1=4x-3\end{align*} so \begin{align*}x=4\end{align*}.

Example 2

If \begin{align*}\angle 2=5x+2\end{align*} and \begin{align*}\angle 6 = 3x+10\end{align*}, solve for x.

Since they are corresponding angles and the lines are parallel, they must be congruent. Set the expressions equal to teach other and solve for \begin{align*}x\end{align*}\begin{align*}5x+2=3x+10\end{align*} so \begin{align*}x=4\end{align*}

Example 3 

 If \begin{align*}\angle 7=5x+6\end{align*} and \begin{align*}\angle 3 = 8x-10\end{align*}, solve for x.

Since they are corresponding angles and the lines are parallel, they must be congruent. Set the expressions equal to each other and solve for \begin{align*}x\end{align*}. \begin{align*}5x+5=8x-10\end{align*} so \begin{align*}x=5\end{align*}.

Interactive Practice

 

 

 

Review

  1. Determine if the angle pair \begin{align*}\angle 4\end{align*} and \begin{align*}\angle 2\end{align*} is congruent, supplementary or neither:
  2. Give two examples of corresponding angles in the diagram:
  3. Find the value of \begin{align*}x\end{align*}:
  4. Are the lines parallel? Why or why not?
  5. Are the lines parallel? Justify your answer.

For 6-10, what does the value of \begin{align*}x\end{align*} have to be to make the lines parallel?

  1. If \begin{align*}m\angle 1 = (6x-5)^\circ\end{align*} and \begin{align*}m\angle 5 = (5x+7)^\circ\end{align*}.
  2. If \begin{align*}m\angle 2 = (3x-4)^\circ\end{align*} and \begin{align*}m\angle 6 = (4x-10)^\circ\end{align*}.
  3. If \begin{align*}m\angle 3 = (7x-5)^\circ\end{align*} and \begin{align*}m\angle 7 = (5x+11)^\circ\end{align*}.
  4. If \begin{align*}m\angle 4 = (5x-5)^\circ\end{align*} and \begin{align*}m\angle 8 = (3x+15)^\circ\end{align*}.
  5. If \begin{align*}m\angle 2 = (2x+4)^\circ\end{align*} and \begin{align*}m\angle 6 = (5x-2)^\circ\end{align*}.

For questions 11-15, use the picture below.

  1. What is the corresponding angle to \begin{align*}\angle 4\end{align*}?
  2. What is the corresponding angle to \begin{align*}\angle 1\end{align*}?
  3. What is the corresponding angle to \begin{align*}\angle 2\end{align*}?
  4. What is the corresponding angle to \begin{align*}\angle 3\end{align*}?
  5. Are the two lines parallel? Explain.

Review (Answers)

To view the Review answers, open this PDF file and look for section 3.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Corresponding Angles

Corresponding angles are two angles that are in the same position with respect to the transversal, but on different lines.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Corresponding Angles.
Please wait...
Please wait...