What if you enlarged or reduced a triangle without changing its shape? How could you find the scale factor by which the triangle was stretched or shrunk? After completing this Concept, you'll be able to use the corresponding sides of dilated figures to solve problems like this one.

### Watch This

CK-12 Foundation: Chapter7DilationA

Learn more about dilations by watching the video at this link.

### Guidance

A **transformation** is an operation that moves, flips, or changes a figure to create a new figure. Transformations that preserve size are ** rigid** and ones that do not are

**A**

*non-rigid.***dilation**makes a figure larger or smaller, but has the same shape as the original. In other words, the dilation is similar to the original. All dilations have a

**center**and a

**scale factor.**The center is the point of reference for the dilation (like the vanishing point in a perspective drawing) and scale factor tells us how much the figure stretches or shrinks. A scale factor is typically labeled

*If the dilated image is smaller than the original, then the scale factor is 0<k<1.*

*If the dilated image is larger than the original, then the scale factor is k>1.*

#### Example A

The center of dilation is

If the scale factor is 3 and

#### Example B

Using the picture above, change the scale factor to

Now the scale factor is

#### Example C

If

Watch this video for help with the Examples above.

CK-12 Foundation: Chapter7DilationB

### Guided Practice

1. Find the perimeters of

2.

3. Find the scale factor, given the corresponding sides. In the diagram, the **black** figure is the original and

**Answers:**

1. The perimeter of

2. Because

If \begin{align*}\triangle DEF\end{align*} was the dilated image, the scale factor would have been \begin{align*}\frac{5}{3}\end{align*}.

3. Since the dilation is smaller than the original, the scale factor is going to be less than one. \begin{align*}\frac{8}{20}=\frac{2}{5}\end{align*}

### Explore More

In the two questions below, you are told the scale factor. Determine the dimensions of the dilation. In each diagram, the **black** figure is the original and \begin{align*}P\end{align*} is the center of dilation.

- \begin{align*}k = 4\end{align*}
- \begin{align*}k = \frac{1}{3}\end{align*}

In the question below, find the scale factor, given the corresponding sides. In the diagram, the **black** figure is the original and \begin{align*}P\end{align*} is the center of dilation.

- Find the perimeter of both triangles in #1. What is the ratio of the perimeters?
What happens if \begin{align*}k = 1\end{align*}?*Writing*

** Construction** We can use a compass and straight edge to construct a dilation as well. Copy the diagram below.

- Set your compass to be \begin{align*}CG\end{align*} and use this setting to mark off a point 3 times as far from \begin{align*}C\end{align*} as \begin{align*}G\end{align*} is. Label this point \begin{align*}G'\end{align*}. Repeat this process for \begin{align*}CO\end{align*} and \begin{align*}CD\end{align*} to find \begin{align*}O'\end{align*} and \begin{align*}D'\end{align*}.
- Connect \begin{align*}G', O'\end{align*} and \begin{align*}D'\end{align*} to make \begin{align*}\triangle D'O'G'\end{align*}. Find the ratios, \begin{align*}\frac{D'O'}{DO}, \frac{O'G'}{OG}\end{align*} and \begin{align*}\frac{G'D'}{GD}\end{align*}.
- What is the scale factor of this dilation?
- Describe how you would dilate the figure by a scale factor of 4.
- Describe how you would dilate the figure by a scale factor of \begin{align*}\frac{1}{2}\end{align*}.

- The scale factor between two shapes is 1.5. What is the ratio of their perimeters?
- The scale factor between two shapes is 1.5. What is the ratio of their areas?
*Hint: Draw an example and calculate what happens.* - Suppose you dilate a triangle with side lengths 3, 7, and 9 by a scale factor of 3. What are the side lengths of the image?
- Suppose you dilate a rectangle with a width of 10 and a length of 12 by a scale factor of \begin{align*}\frac{1}{2}\end{align*}. What are the dimensions of the image?
- Find the areas of the rectangles in #14. What is the ratio of their areas?

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 7.11.