What if you were given a pattern of three numbers or shapes and asked to determine the sixth number or shape that fit that pattern? After completing this Concept, you'll be able to use inductive reasoning to draw conclusions like this based on examples and patterns provided.
Watch This
CK12 Types of Reasoning: Inductive
Watch the first two parts of this video.
James Sousa: Inductive Reasoning
Guidance
One type of reasoning is inductive reasoning . Inductive reasoning entails making conclusions based upon examples and patterns. Visual patterns and number patterns provide good examples of inductive reasoning. Let’s look at some patterns to get a feel for what inductive reasoning is.
Example A
A dot pattern is shown below. How many dots would there be in the figure? How many dots would be in the figure?
Draw a picture. Counting the dots, there are .
For the figure, we can use the same pattern, . There are 21 dots in the figure.
Example B
How many triangles would be in the figure?
There would be 10 squares in the figure, with a triangle above and below each one. There is also a triangle on each end of the figure. That makes triangles in all.
Example C
Look at the pattern 2, 4, 6, 8, 10, What is the term in the pattern?
Each term is 2 more than the previous term.
You could count out the pattern until the term, but that could take a while. Notice that the term is , the term is , the term is , and so on. So, the term would be or 38.
CK12 Types of Reasoning: Inductive
Guided Practice
1. For two points, there is one line segment connecting them. For three noncollinear points, there are three segments. For four points, how many line segments can be drawn to connect them? If you add a fifth point, how many line segments can be drawn to connect the five points?
2. Look at the pattern 1, 3, 5, 7, 9, 11, What is the term in the pattern?
3. Look at the pattern: 3, 6, 12, 24, 48,
a) What is the next term in the pattern?
b) What is the term?
4. Find the term in the list of numbers:
Answers:
1. Draw a picture of each and count the segments.
For 4 points there are 6 line segments and for 5 points there are 10 line segments.
2. The next term would be 13 and continue go up by 2. Comparing this pattern to Example C, each term is one less. So, we can reason that the term would be minus 1, which is 67.
3. Each term is multiplied by 2 to get the next term.
Therefore, the next term will be or 96. To find the term, continue to multiply by 2, or .
4. First, change 2 into a fraction, or . So, the pattern is now The top is 2, 3, 4, 5, 6. It increases by 1 each time, so the term’s numerator is 9. The denominators are the square numbers, so the term’s denominator is or 64. The term is .
Practice
For questions 13, determine how many dots there would be in the and the pattern of each figure below.

Use the pattern below to answer the questions.
 Draw the next figure in the pattern.
 How does the number of points in each star relate to the figure number?

Use the pattern below to answer the questions. All the triangles are equilateral triangles.
 Draw the next figure in the pattern. How many triangles does it have?
 Determine how many triangles are in the figure.
For questions 613, determine: the next three terms in the pattern.
 5, 8, 11, 14, 17,
 6, 1, 4, 9, 14,
 2, 4, 8, 16, 32,
 67, 56, 45, 34, 23,
 9, 4, 6, 8, 3,
 1, 5, 9, 13, 17,
For questions 1417, determine the next two terms and describe the pattern.
 3, 6, 11, 18, 27,
 3, 8, 15, 24, 35,
 1, 8, 27, 64, 125,
 1, 1, 2, 3, 5,