Skip Navigation

Inscribed Quadrilaterals in Circles

Quadrilaterals with every vertex on a circle and opposite angles that are supplementary.

Atoms Practice
Estimated9 minsto complete
Practice Inscribed Quadrilaterals in Circles
This indicates how strong in your memory this concept is
Estimated9 minsto complete
Practice Now
Turn In
Inscribed Quadrilaterals in Circles

Inscribed Quadrilaterals in Circles

An inscribed polygon is a polygon where every vertex is on the circle, as shown below.

For inscribed quadrilaterals in particular, the opposite angles will always be supplementary.

Inscribed Quadrilateral Theorem: A quadrilateral can be inscribed in a circle if and only if the opposite angles are supplementary.

If \begin{align*}ABCD\end{align*} is inscribed in \begin{align*}\bigodot E\end{align*}, then \begin{align*}m\angle A+m\angle C=180^\circ\end{align*} and \begin{align*}m\angle B+m\angle D=180^\circ\end{align*}. Conversely, If \begin{align*}m\angle A+m\angle C=180^\circ\end{align*} and \begin{align*}m\angle B+m\angle D=180^\circ\end{align*}, then \begin{align*}ABCD\end{align*} is inscribed in \begin{align*}\bigodot E\end{align*}.

What if you were given a circle with a quadrilateral inscribed in it? How could you use information about the arcs formed by the quadrilateral and/or the quadrilateral's angle measures to find the measure of the unknown quadrilateral angles?



Example 1

Find the values of the missing variables.

\begin{align*}x+80^\circ &= 180^\circ && y+71^\circ = 180^\circ\\ x &= 100^\circ && y=109^\circ\end{align*}

    \begin{align*}z+93^\circ &=180^\circ && x=\frac{1}{2} (58^\circ+106^\circ) && y+82^\circ=180^\circ\!\\ z &= 87^\circ && x=82^\circ && y = 98^\circ\end{align*}

Example 2

Find \begin{align*}x\end{align*} and \begin{align*}y\end{align*} in the picture below.

\begin{align*}(7x+1)^\circ+105^\circ& =180^\circ && (4y+14)^\circ+(7y+1)^\circ=180^\circ\\ 7x+106^\circ&=180^\circ && \qquad \qquad \quad \ 11y+15^\circ=180^\circ\\ 7x&=74 && \qquad \qquad \qquad \qquad 11y=165\\ x&=10.57 && \qquad \qquad \qquad \qquad \quad y=15\end{align*}

Example 3

Find the values of \begin{align*}x\end{align*} and \begin{align*}y\end{align*} in \begin{align*}\bigodot A\end{align*}.

Use the Inscribed Quadrilateral Theorem. \begin{align*}x^\circ + 108^\circ =180^\circ\end{align*} so \begin{align*} x=72^\circ\end{align*}. Similarly, \begin{align*}y^\circ + 88^\circ = 180^\circ\end{align*} so \begin{align*}y=92^\circ\end{align*}.

Example 4

Quadrilateral \begin{align*}ABCD\end{align*} is inscribed in \begin{align*}\bigodot E\end{align*}. Find \begin{align*}m\angle A\end{align*}\begin{align*}m\angle B\end{align*}\begin{align*}m\angle C\end{align*}, and \begin{align*}m\angle D\end{align*}.

First, note that \begin{align*}m\widehat{AD}=105^\circ\end{align*} because the complete circle must add up to \begin{align*}360^\circ\end{align*}.

\begin{align*}m\angle A=\frac{1}{2}m\widehat{BD}=\frac{1}{2}(115+86)=100.5^\circ\end{align*}

\begin{align*}m\angle B=\frac{1}{2}m\widehat{AC}=\frac{1}{2}(86+105)=95.5^\circ\end{align*}

\begin{align*}m\angle C=180^\circ-m\angle A=180^\circ-100.5^\circ=79.5^\circ\end{align*}

\begin{align*}m\angle D=180^\circ-m\angle B=180^\circ-95.5^\circ=84.5^\circ\end{align*}


Fill in the blanks.

  1. A\begin{align*}(n)\end{align*} _______________ polygon has all its vertices on a circle.
  2. The _____________ angles of an inscribed quadrilateral are ________________.

Quadrilateral \begin{align*}ABCD\end{align*} is inscribed in \begin{align*}\bigodot E\end{align*}. Find:

  1. \begin{align*}m\angle DBC\end{align*}
  2. \begin{align*}m \widehat{BC}\end{align*}
  3. \begin{align*}m \widehat{AB}\end{align*}
  4. \begin{align*}m\angle ACD\end{align*}
  5. \begin{align*}m\angle ADC\end{align*}
  6. \begin{align*}m\angle ACB\end{align*}

Find the value of \begin{align*}x\end{align*} and/or \begin{align*}y\end{align*} in \begin{align*}\bigodot A\end{align*}.

Solve for \begin{align*}x\end{align*}.

Review (Answers)

To see the Review answers, open this PDF file and look for section 9.6. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


central angle An angle formed by two radii and whose vertex is at the center of the circle.
chord A line segment whose endpoints are on a circle.
circle The set of all points that are the same distance away from a specific point, called the center.
diameter A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
inscribed angle An angle with its vertex on the circle and whose sides are chords.
intercepted arc The arc that is inside an inscribed angle and whose endpoints are on the angle.
radius The distance from the center to the outer rim of a circle.
Inscribed Polygon An inscribed polygon is a polygon with every vertex on a given circle.
Inscribed Quadrilateral Theorem The Inscribed Quadrilateral Theorem states that a quadrilateral can be inscribed in a circle if and only if the opposite angles of the quadrilateral are supplementary.
Cyclic Quadrilaterals A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Inscribed Quadrilaterals in Circles.
Please wait...
Please wait...