<meta http-equiv="refresh" content="1; url=/nojavascript/"> Interior Angles in Convex Polygons ( Read ) | Geometry | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Interior Angles in Convex Polygons

%
Progress
Practice Interior Angles in Convex Polygons
Practice
Progress
%
Practice Now
Interior Angles in Convex Polygons

What if you were given an equiangular seven-sided convex polygon? How could you determine the measure of its interior angles? After completing this Concept, you'll be able to use the Polygon Sum Formula to solve problems like this one.

Watch This

CK-12 Interior Angles in Convex Polygons

Watch the first half of this video.

James Sousa: Angles of Convex Polygons

Guidance

The interior angle of a polygon is one of the angles on the inside, as shown in the picture below. A polygon has the same number of interior angles as it does sides.

The sum of the interior angles in a polygon depends on the number of sides it has. The Polygon Sum Formula states that for any n- gon, the interior angles add up to (n - 2) \times 180^\circ.

\rightarrow n = 8& \\(8 - 2) & \times 180^\circ\\6 & \times 180^\circ\\1& 080^\circ

Once you know the sum of the interior angles in a polygon it is easy to find the measure of ONE interior angle if the polygon is regular : all sides are congruent and all angles are congruent. Just divide the sum of the angles by the number of sides.

Regular Polygon Interior Angle Formula: For any equiangular n- gon, the measure of each angle is \frac{(n-2) \times 180^\circ}{n} .

In the picture below, if all eight angles are congruent then each angle is \frac{(8 - 2) \times 180^\circ}{8} = \frac{6 \times 180^\circ}{8} = \frac{1080^\circ}{8} = 135^\circ .

Example A

The interior angles of a polygon add up to 1980^\circ . How many sides does it have?

Use the Polygon Sum Formula and solve for n .

(n - 2) \times 180^\circ & = 1980^\circ\\180^\circ n - 360^\circ & = 1980^\circ\\180^\circ n & = 2340^\circ\\n & = 13

The polygon has 13 sides.

Example B

How many degrees does each angle in an equiangular nonagon have?

First we need to find the sum of the interior angles; set n = 9.

(9 - 2) \times 180^\circ = 7 \times 180^\circ = 1260^\circ

“Equiangular” tells us every angle is equal. So, each angle is \frac{1260^\circ}{9} = 140^\circ .

Example C

An interior angle in a regular polygon is 135^\circ . How many sides does this polygon have?

Here, we will set the Regular Polygon Interior Angle Formula equal to 135^\circ and solve for n .

\frac{(n - 2) \times 180^\circ}{n} & = 135^\circ\\180^\circ n - 360^\circ & = 135^\circ n\\-360^\circ & = -45^\circ n\\n & = 8 \qquad \quad \text{The polygon is an octagon}.

CK-12 Interior Angles in Convex Polygons

Guided Practice

1. Find the measure of x .

2. The interior angles of a pentagon are x^\circ, x^\circ, 2x^\circ, 2x^\circ, and 2x^\circ . What is x ?

3. What is the sum of the interior angles in a 100-gon?

Answers:

1. From the Polygon Sum Formula we know that a quadrilateral has interior angles that sum to (4-2) \times 180^\circ=360^\circ .

Write an equation and solve for x .

89^\circ + (5x - 8)^\circ + (3x + 4)^\circ + 51^\circ & = 360^\circ\\8x & = 224\\x & = 28

2. From the Polygon Sum Formula we know that a pentagon has interior angles that sum to (5-2) \times 180^\circ=540^\circ .

Write an equation and solve for x .

 x^\circ + x^\circ + 2x^\circ + 2x^\circ + 2x^\circ&=540^\circ\\ 8x&=540\\x&=67.5

3. Use the Polygon Sum Formula. (100-2) \times 180^\circ=17,640^\circ .

Practice

  1. Fill in the table.
# of sides Sum of the Interior Angles Measure of Each Interior Angle in a Regular n- gon
3 60^\circ
4 360^\circ
5 540^\circ 108^\circ
6 120^\circ
7
8
9
10
11
12
  1. What is the sum of the angles in a 15-gon?
  2. What is the sum of the angles in a 23-gon?
  3. The sum of the interior angles of a polygon is 4320^\circ . How many sides does the polygon have?
  4. The sum of the interior angles of a polygon is 3240^\circ . How many sides does the polygon have?
  5. What is the measure of each angle in a regular 16-gon?
  6. What is the measure of each angle in an equiangular 24-gon?
  7. Each interior angle in a regular polygon is 156^\circ . How many sides does it have?
  8. Each interior angle in an equiangular polygon is 90^\circ . How many sides does it have?

For questions 10-18, find the value of the missing variable(s).

  1. The interior angles of a hexagon are x^\circ, (x + 1)^\circ, (x + 2)^\circ, (x + 3)^\circ, (x + 4)^\circ, and (x + 5)^\circ. What is x ?

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Interior Angles in Convex Polygons.

Reviews

Please wait...
Please wait...

Original text