<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Linear Pairs

Two adjacent angles that form a straight line.

Atoms Practice
Estimated6 minsto complete
Practice Linear Pairs
Estimated6 minsto complete
Practice Now
Turn In
Linear Pairs

Linear Pairs 

Adjacent angles are two angles that have the same vertex, share a side, and do not overlap. In the picture below, \begin{align*}\angle PSQ\end{align*} and \begin{align*}\angle QSR\end{align*} are adjacent.

A linear pair is two angles that are adjacent and whose non-common sides form a straight line. If two angles are a linear pair, then they are supplementary.

\begin{align*}\angle PSQ\end{align*} and \begin{align*}\angle QSR\end{align*} are a linear pair.

\begin{align*}m \angle PSR & = 180^\circ\\ m \angle PSQ + m \angle QSR & = m \angle PSR\\ m \angle PSQ + m \angle QSR & = 180^\circ\end{align*}







Measuring Angles 

What is the value of each angle?

These two angles are a linear pair, so they are supplementary, or add up to \begin{align*}180^\circ\end{align*}. Write an equation.

\begin{align*}(7q - 46)^\circ + (3q + 6)^\circ & = 180^\circ\\ 10q - 40^\circ & = 180^\circ\\ 10q & = 220^\circ\\ q & = 22^\circ\end{align*}

So, plug in \begin{align*}q\end{align*} to get the measure of each angle.

\begin{align*}m \angle ABD = 7(22^\circ) - 46^\circ = 108^\circ \quad m \angle DBC = 180^\circ - 108^\circ = 72^\circ\end{align*}

Identifying Linear Pairs

1. Are \begin{align*}\angle CDA\end{align*} and \begin{align*}\angle DAB\end{align*} a linear pair? Are they supplementary?

The two angles are not a linear pair because they do not have the same vertex. However, they are supplementary, \begin{align*}120^\circ + 60^\circ = 180^\circ\end{align*}.

2. Name one linear pair in the diagram below.

One example is \begin{align*} \angle INM\end{align*} and \begin{align*} \angle MNL\end{align*}.






The following Examples use the diagram below:

Example 1

What is \begin{align*}m\angle INL\end{align*}?


Example 2

What is \begin{align*}m\angle LNK\end{align*}?


Example 3

If \begin{align*}m\angle INJ = 63^\circ\end{align*}, find \begin{align*}m\angle MNI\end{align*}.

\begin{align*}180^\circ - 63^\circ=117^\circ\end{align*} 


For 1-5, determine if the statement is true or false.

  1. Linear pairs are congruent.
  2. Adjacent angles share a vertex.
  3. Adjacent angles overlap.
  4. Linear pairs are supplementary.
  5. Supplementary angles form linear pairs.

Find the measure of an angle that forms a linear pair with \begin{align*}\angle MRS\end{align*} if \begin{align*} m\angle MRS\end{align*} is:

  1. \begin{align*}54^\circ\end{align*}
  2. \begin{align*}32^\circ\end{align*}
  3. \begin{align*}104^\circ\end{align*}
  4. \begin{align*}71^\circ\end{align*}
  5. \begin{align*}149^\circ\end{align*}
  6. \begin{align*}x^\circ\end{align*}

For 12-16, find the value of \begin{align*}x\end{align*}.

Review (Answers)

To view the Review answers, open this PDF file and look for section 1.9. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


Adjacent Angles

Two angles are adjacent if they share a side and vertex. The word 'adjacent' means 'beside' or 'next-to'.


A diagram is a drawing used to represent a mathematical problem.

linear pair

Two angles form a linear pair if they are supplementary and adjacent.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Linear Pairs.
Please wait...
Please wait...