<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Medians

## Line segment that joins a vertex and the midpoint of the opposite side of a triangle.

0%
Progress
Practice Medians
Progress
0%
Medians

What if you were told that \begin{align*}J\end{align*}, \begin{align*}K\end{align*}, and \begin{align*}L\end{align*} were the midpoints of the sides of \begin{align*}\triangle FGH\end{align*} and that \begin{align*}M\end{align*} was the centroid of \begin{align*}\triangle FGH\end{align*}? Given the length of \begin{align*}JK\end{align*}, how could you find the lengths of \begin{align*}JM\end{align*} and \begin{align*}KM\end{align*}? After completing this Concept, you'll be able to use the Median Theorem to solve problems like this one.

### Watch This

First watch this video.

James Sousa: Medians of a Triangle

Now watch this video.

James Sousa: Using the Properties of Medians to Solve for Unknown Values

### Guidance

In a triangle, the line segment that joins a vertex and the midpoint of the opposite side is called a median.

\begin{align*}\overline{LO}\end{align*} is the median from \begin{align*}L\end{align*} to the midpoint of \begin{align*}\overline{NM}\end{align*}.

If you draw all three medians they will intersect at one point called the centroid.

The centroid is the “balancing point” of a triangle. This means that if you were to cut out the triangle, the centroid is its center of gravity so you could balance it there.

The Median Theorem states that the medians of a triangle intersect at a point called the centroid that is two-thirds of the distance from the vertices to the midpoint of the opposite sides.

So if \begin{align*}G\end{align*} is the centroid, then:

#### Example A

\begin{align*}I, \ K\end{align*}, and \begin{align*}M\end{align*} are midpoints of the sides of \begin{align*}\triangle HJL\end{align*}.

a) If \begin{align*}JM = 18\end{align*}, find \begin{align*}JN\end{align*} and \begin{align*}NM\end{align*}.

b) If \begin{align*}HN = 14\end{align*}, find \begin{align*}NK\end{align*} and \begin{align*}HK\end{align*}.

To solve, use the Median Theorem.

a) \begin{align*}JN = \frac{2}{3} \cdot 18 = 12\end{align*}. \begin{align*}NM = JM - JN = 18 - 12\end{align*}. \begin{align*}NM = 6.\end{align*}

b) \begin{align*}14 = \frac{2}{3} \cdot HK\end{align*}

\begin{align*}14 \cdot \frac{3}{2} = HK = 21\end{align*}. \begin{align*}NK\end{align*} is a third of 21, \begin{align*}NK = 7\end{align*}.

#### Example B

\begin{align*}H\end{align*} is the centroid of \begin{align*}\triangle ABC\end{align*} and \begin{align*}DC = 5y - 16\end{align*}. Find \begin{align*}x\end{align*} and \begin{align*}y\end{align*}.

To solve, use the Median Theorem. Set up and solve equations.

#### Example C

\begin{align*}B, \ D\end{align*}, and \begin{align*}F\end{align*} are the midpoints of each side and \begin{align*}G\end{align*} is the centroid. If \begin{align*}BG = 5\end{align*}, find \begin{align*}GE\end{align*} and \begin{align*}BE\end{align*}

Use the Median Theorem.

.

Therefore, \begin{align*}GE=10\end{align*}.

CK-12 Medians

-->

### Guided Practice

1. \begin{align*}B, \ D\end{align*}, and \begin{align*}F\end{align*} are the midpoints of each side and \begin{align*}G\end{align*} is the centroid. If \begin{align*}CG = 16\end{align*}, find \begin{align*}GF\end{align*} and \begin{align*}CF\end{align*}

2. True or false: The median bisects the side it intersects.

3. \begin{align*}N\end{align*} and \begin{align*}M\end{align*} are the midpoints of sides \begin{align*}\overline{XY}\end{align*}and \begin{align*}\overline{ZY}\end{align*}.

a. What is point \begin{align*}C\end{align*}?

b. If \begin{align*}XN = 5\end{align*}, find \begin{align*}XY\end{align*}.

c. If \begin{align*}ZN = 6x + 15\end{align*} and \begin{align*}ZC = 38\end{align*}, find \begin{align*}x\end{align*} and \begin{align*}ZN\end{align*}.

Answers

1. Use the Median Theorem.

.

Therefore, \begin{align*}GF=8\end{align*}

2. This statement is true. By definition, a median intersects a side of a triangle at its midpoint. Midpoints divide segments into two equal parts.

3. Use the Median Theorem.

a. \begin{align*}C\end{align*} is the centroid.

b. \begin{align*}XN=\frac{1}{2}XY\end{align*}, so \begin{align*}XY=10\end{align*}.

c.

.

Substitute \begin{align*}7\end{align*} for \begin{align*}x\end{align*} to find that \begin{align*}ZN=57\end{align*}.

### Explore More

For questions 1-4, \begin{align*}B, \ D\end{align*}, and \begin{align*}F\end{align*} are the midpoints of each side and \begin{align*}G\end{align*} is the centroid. Find the following lengths.

1. If \begin{align*}CG = 16\end{align*}, find \begin{align*}GF\end{align*} and \begin{align*}CF\end{align*}
2. If \begin{align*}AD = 30\end{align*}, find \begin{align*}AG\end{align*} and \begin{align*}GD\end{align*}
3. If \begin{align*}GF = x\end{align*}, find \begin{align*}GC\end{align*} and \begin{align*}CF\end{align*}
4. If \begin{align*}AG = 9x\end{align*} and \begin{align*}GD = 5x - 1\end{align*}, find \begin{align*}x\end{align*} and \begin{align*}AD\end{align*}.

Multi-step Problems Find the equation of a median in the \begin{align*}x-y\end{align*} plane.

1. Plot \begin{align*}\triangle ABC: \ A(-6, 4), \ B(-2, 4)\end{align*} and \begin{align*}C(6, -4)\end{align*}
2. Find the midpoint of \begin{align*}\overline{AC}\end{align*}. Label it \begin{align*}D\end{align*}.
3. Find the slope of \begin{align*}\overline{BD}\end{align*}.
4. Find the equation of \begin{align*}\overline{BD}\end{align*}.
5. Plot \begin{align*}\triangle DEF: \ D(-1, 5), \ E(1, 0), \ F(6, 3)\end{align*}
6. Find the midpoint of \begin{align*}\overline{EF}\end{align*}. Label it \begin{align*}G\end{align*}.
7. Find the slope of \begin{align*}\overline{DG}\end{align*}.
8. Find the equation of \begin{align*}\overline{DG}\end{align*}.

Determine whether the following statement is true or false.

1. The centroid is the balancing point of a triangle.

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 5.4.

### Vocabulary Language: English

centroid

centroid

The centroid is the point of intersection of the medians in a triangle.
Median

Median

The median of a triangle is the line segment that connects a vertex to the opposite side's midpoint.

Please wait...
Please wait...