What if you were given the coordinates of two points and you wanted to find the point exactly in the middle of them? How would you find the coordinates of this third point? After completing this Concept, you'll be able to use the Midpoint Formula to find the location of such a point in the coordinate plane.
Watch This
CK12 Midpoints and Segment Bisectors
James Sousa: Segment Midpoint and Segment Perpendicular Bisector
Then watch this video the first part of this video.
<media class="youtube" id="
James Sousa: Midpoint Exercise 1
Guidance
When two segments are congruent, we indicate that they are congruent, or of equal length, with segment markings, as shown below:
A midpoint is a point on a line segment that divides it into two congruent segments.
Because
When points are plotted in the coordinate plane, we can use a formula to find the midpoint between them.
Here are two points, (5, 6) and (3, 2).
The midpoint should be halfway between the points on the segment connecting them. Just by looking, it seems like the midpoint is (1, 4).
Midpoint Formula: For two points,
Let’s use the formula to make sure (1, 4) is the midpoint between (5, 6) and (3, 2).
A segment bisector cuts a line segment into two congruent parts and passes through the midpoint. A perpendicular bisector is a segment bisector that intersects the segment at a right angle.
Example A
Write all equal segment statements.
Example B
Is
No, it is not
Example C
Find the midpoint between (9, 2) and (5, 14).
Plug the points into the formula.
CK12 Midpoints and Segment Bisectors
Guided Practice
1. If
2. Which line is the perpendicular bisector of
3. Find
Answers:
1. Plug what you know into the midpoint formula.
2. The perpendicular bisector must bisect
3. The line shown is the perpendicular bisector.
Practice
 Copy the figure below and label it with the following information:
For 24, use the following picture to answer the questions.

P is the midpoint of what two segments?  How does
VS¯¯¯¯¯¯¯ relate toQT¯¯¯¯¯¯¯¯ ?  How does
QT¯¯¯¯¯¯¯¯ relate toVS¯¯¯¯¯¯¯ ?
For exercise 5, use algebra to determine the value of variable in each problem.
For questions 610, find the midpoint between each pair of points.
 (2, 3) and (8, 7)
 (9, 1) and (6, 11)
 (4, 10) and (14, 0)
 (0, 5) and (9, 9)
 (3, 5) and (2, 1)
Given the midpoint

A(−1,2) andM(3,6) 
B(−10,−7) andM(−2,1)