<meta http-equiv="refresh" content="1; url=/nojavascript/"> Perpendicular Lines ( Read ) | Geometry | CK-12 Foundation
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Perpendicular Lines

Best Score
Practice Perpendicular Lines
Best Score
Practice Now

Perpendicular Lines

What if you were given a pair of lines that intersect each other at a 90^\circ angle? What terminology would you use to describe such lines? After completing this Concept, you will be able to define perpendicular lines. You'll also be able to apply the properties associated with such lines to solve for unknown angles.

Watch This

CK-12 Perpendicular Lines

Watch the portions of this video dealing with perpendicular lines.

James Sousa: Perpendicular Lines

Then watch this video.

James Sousa: Perpendicular Line Postulate


Two lines are perpendicular when they intersect to form a 90^\circ angle. Below, l \perp \overline{AB} .

In the definition of perpendicular the word “line” is used. However, line segments, rays and planes can also be perpendicular. The image below shows two parallel planes, with a third blue plane that is perpendicular to both of them.

Basic Facts about Perpendicular Lines

Theorem #1: If l || m and n \perp l , then n \perp m .

Theorem #2: If l \perp n and n \perp m , then l || m .

Postulate: For any line and a point not on the line, there is one line perpendicular to this line passing through the point. There are infinitely many lines that pass through A , but only one that is perpendicular to l .

Example A

Which of the following is the best example of perpendicular lines?

  1. Latitude on a Globe
  2. Opposite Sides of a Picture Frame
  3. Fence Posts
  4. Adjacent Sides of a Picture Frame

The best example would be adjacent sides of a picture frame. Remember that adjacent means next to and sharing a vertex. The adjacent sides of a picture frame meet at a 90^\circ angle and so these sides are perpendicular.

Example B

Is \overleftrightarrow{SO} \perp \overrightarrow{GD} ?

\angle OGD \cong \angle SGD and the angles form a linear pair. This means both angles are 90^\circ , so the lines are perpendicular.

Example C

Write a 2-column proof to prove Theorem #1. Note: You need to understand corresponding angles in order to understand this proof. If you have not yet learned corresponding angles, be sure to check out that concept first, or skip this example for now.

Given : l || m, \ l \perp n

Prove : n \perp m

Statement Reason
1. l || m, \ l \perp n 1. Given
2. \angle 1, \ \angle 2, \ \angle 3 , and \angle 4 are right angles 2. Definition of perpendicular lines
3. m\angle 1 = 90^\circ 3. Definition of a right angle
4. m\angle 1 = m\angle 5 4. Corresponding Angles Postulate
5. m\angle 5 = 90^\circ 5. Transitive PoE
6. m\angle 6 = m\angle 7 = 90^\circ 6. Congruent Linear Pairs
7. m\angle 8 = 90^\circ 7. Vertical Angles Theorem
8. \angle 5, \ \angle 6, \ \angle 7 , and \angle 8 are right angles 8. Definition of right angle
9. n \perp m 9. Definition of perpendicular lines

CK-12 Perpendicular Lines

Guided Practice

1. Find m\angle CTA .

2. Determine the measure of \angle 1 .

3. Find m\angle 1 .


1. These two angles form a linear pair and \angle STC is a right angle.

m\angle STC & = 90^\circ\\m\angle CTA \ & \text{is} \ 180^\circ - 90^\circ = 90^\circ

2. We know that both parallel lines are perpendicular to the transversal.

m\angle 1 = 90^\circ.

3. The two adjacent angles add up to 90^\circ , so l \perp m .

m\angle 1 = 90^\circ because it is a vertical angle to the pair of adjacent angles and vertical angles are congruent.


Use the figure below to answer questions 1-2. The two pentagons are parallel and all of the rectangular sides are perpendicular to both of them.

  1. List a pair of perpendicular lines.
  2. For \overline{AB} , how many perpendicular lines would pass through point V ? Name this/these line(s).

Use the picture below for questions 3.

  1. If t \perp l , is t \perp m ? Why or why not?

Find the measure of \angle 1 for each problem below.

In questions 13-16, determine if l \perp m .

Fill in the blanks in the proof below.

  1. Given : l \perp m, \ l \perp n Prove : m || n

Statement Reason
1. 1.
2. \angle 1 and \angle 2 are right angles 2.
3. 3. Definition of right angles
4. 4. Transitive PoE
5. m || n 5.

Image Attributions


Email Verified
Well done! You've successfully verified the email address .
Please wait...
Please wait...

Original text