<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Quadrilaterals that are Parallelograms

Ways to show if a quadrilateral has two pairs of parallel sides.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Quadrilaterals that are Parallelograms
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Turn In
Quadrilaterals that are Parallelograms

Quadrilaterals that are Parallelograms

Recall that a parallelogram is a quadrilateral with two pairs of parallel sides. Even if a quadrilateral is not marked with having two pairs of sides, it still might be a parallelogram. The following is a list of theorems that will help you decide if a quadrilateral is a parallelogram or not.

1.  Opposite Sides Theorem Converse: If both pairs of opposite sides of a quadrilateral are congruent, then the figure is a parallelogram.

If then

2.  Opposite Angles Theorem Converse: If both pairs of opposite angles of a quadrilateral are congruent, then the figure is a parallelogram.

If then

3.  Parallelogram Diagonals Theorem Converse: If the diagonals of a quadrilateral bisect each other, then the figure is a parallelogram.

If then

4.  Parallel Congruent Sides Theorem: If a quadrilateral has one set of parallel lines that are also congruent, then it is a parallelogram.

If then

You can use any of the above theorems to help show that a quadrilateral is a parallelogram. If you are working in the \begin{align*}x-y\end{align*} plane, you might need to know the formulas shown below to help you use the theorems.

  • The Slope Formula, \begin{align*}\frac{y_2 - y_1}{x_2 - x_1}\end{align*}. (Remember that if slopes are the same then lines are parallel).
  • The Distance Formula, \begin{align*}\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\end{align*}. (This will help you to show that two sides are congruent).
  • The Midpoint Formula, \begin{align*}\left ( \frac{x_1 + x_2 }{2} , \frac{y_1 + y_2}{2} \right )\end{align*}. (If the midpoints of the diagonals are the same then the diagonals bisect each other).

What if you were given four pairs of coordinates that form a quadrilateral? How could you determine if that quadrilateral is a parallelogram?

 

 

Examples

Example 1

Prove the Parallel Congruent Sides Theorem.

Given: \begin{align*}\overline{AB} \| \overline{DC}\end{align*}, and \begin{align*}\overline{AB} \cong \overline{DC}\end{align*}

Prove: \begin{align*}ABCD\end{align*} is a parallelogram

Statement Reason
1. \begin{align*}\overline{AB} \| \overline{DC}\end{align*}, and \begin{align*}\overline{AB} \cong \overline{DC}\end{align*} 1. Given
2. \begin{align*}\angle ABD \cong \angle BDC\end{align*} 2. Alternate Interior Angles
3. \begin{align*}\overline{DB} \cong \overline{DB}\end{align*} 3. Reflexive PoC
4. \begin{align*}\triangle ABD \cong \triangle CDB\end{align*} 4. SAS
5. \begin{align*}\overline{AD} \cong \overline{BC}\end{align*} 5. CPCTC
6. \begin{align*}ABCD\end{align*} is a parallelogram 6. Opposite Sides Converse

Example 2

What value of \begin{align*}x\end{align*} would make \begin{align*}ABCD\end{align*} a parallelogram?

\begin{align*}\overline{AB} \| \overline{DC}\end{align*}. By the Parallel Congruent Sides Theorem, \begin{align*}ABCD\end{align*} would be a parallelogram if \begin{align*}AB = DC\end{align*}.

\begin{align*}5x - 8 & = 2x + 13\\ 3x & = 21\\ x & = 7\end{align*}

Example 3

Prove the Opposite Sides Theorem Converse.

Given: \begin{align*}\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}\end{align*}

Prove: \begin{align*}ABCD\end{align*} is a parallelogram

Statement Reason
1. \begin{align*}\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}\end{align*} 1.Given
2. \begin{align*}\overline{DB} \cong \overline{DB}\end{align*} 2. Reflexive PoC
3. \begin{align*}\triangle ABD \cong \triangle CDB\end{align*} 3. SSS
4. \begin{align*}\angle ABD \cong \angle BDC, \angle ADB \cong \angle DBC\end{align*} 4. CPCTC
5. \begin{align*}\overline{AB} \| \overline{DC}, \overline{AD} \| \overline{BC}\end{align*} 5. Alternate Interior Angles Converse
6. \begin{align*}ABCD\end{align*} is a parallelogram 6. Definition of a parallelogram

Example 4

Is quadrilateral \begin{align*}EFGH\end{align*} a parallelogram? How do you know?

By the Opposite Angles Theorem Converse, \begin{align*}EFGH\end{align*} is a parallelogram.

\begin{align*}EFGH\end{align*} is not a parallelogram because the diagonals do not bisect each other.

Example 5

Is the quadrilateral \begin{align*}ABCD\end{align*} a parallelogram?

Let’s use the Parallel Congruent Sides Theorem to see if \begin{align*}ABCD\end{align*} is a parallelogram. First, find the length of \begin{align*}AB\end{align*} and \begin{align*}CD\end{align*} using the distance formula.

\begin{align*}AB & = \sqrt{(-1-3)^2 + (5 - 3)^2} && CD = \sqrt{(2 - 6)^2 + (-2 + 4)^2}\\ & = \sqrt{(-4)^2 + 2^2} && = \sqrt{(-4)^2 + 2^2}\\ & = \sqrt{16 + 4} && = \sqrt{16 + 4}\\ & = \sqrt{20} &&= \sqrt{20}\end{align*}

Next find the slopes to check if the lines are parallel.

\begin{align*}\text{Slope}\ AB = \frac{5 - 3}{-1-3} = \frac{2}{-4} = -\frac{1}{2} \qquad \text{Slope}\ CD = \frac{-2 +4}{2-6} = \frac{2}{-4} = -\frac{1}{2}\end{align*}

\begin{align*}AB = CD\end{align*} and the slopes are the same (implying that the lines are parallel), so \begin{align*}ABCD\end{align*} is a parallelogram.

Review

For questions 1-12, determine if the quadrilaterals are parallelograms.

For questions 13-18, determine the value of \begin{align*}x\end{align*} and \begin{align*}y\end{align*} that would make the quadrilateral a parallelogram.

For questions 19-22, determine if \begin{align*}ABCD\end{align*} is a parallelogram.

  1. \begin{align*}A(8, -1), B(6, 5), C(-7, 2), D(-5, -4)\end{align*}
  2. \begin{align*}A(-5, 8), B(-2, 9), C(3, 4), D(0, 3)\end{align*}
  3. \begin{align*}A(-2, 6), B(4, -4), C(13, -7), D(4, -10)\end{align*}
  4. \begin{align*}A(-9, -1), B(-7, 5), C(3, 8), D(1, 2)\end{align*}

Fill in the blanks in the proofs below.

  1. Opposite Angles Theorem Converse

Given: \begin{align*}\angle A \cong \angle C, \angle D \cong \angle B\end{align*}

Prove: \begin{align*}ABCD\end{align*} is a parallelogram

Statement Reason
1. 1.
2. \begin{align*}m \angle A = m \angle C, m \angle D = m \angle B\end{align*} 2.
3. 3. Definition of a quadrilateral
4. \begin{align*}m \angle A + m \angle A + m \angle B + m \angle B = 360^\circ\end{align*} 4.
5. 5. Combine Like Terms
6. 6. Division PoE
7. \begin{align*}\angle A\end{align*} and \begin{align*}\angle B\end{align*} are supplementary \begin{align*}\angle A\end{align*} and \begin{align*}\angle D\end{align*} are supplementary 7.
8. 8. Consecutive Interior Angles Converse
9. \begin{align*}ABCD\end{align*} is a parallelogram 9.
  1. Parallelogram Diagonals Theorem Converse

Given: \begin{align*}\overline{AE} \cong \overline{EC}, \overline{DE} \cong \overline{EB}\end{align*}

Prove: \begin{align*}ABCD\end{align*} is a parallelogram

Statement Reason
1. 1.
2. 2. Vertical Angles Theorem
3. \begin{align*}\triangle AED & \cong \triangle CEB\\ \triangle AEB & \cong \triangle CED\end{align*} 3.
4. 4.
5. \begin{align*}ABCD\end{align*} is a parallelogram 5.
  1. Given: \begin{align*}\angle ADB \cong \angle CBD, \overline{AD} \cong \overline{BC}\end{align*} Prove: \begin{align*}ABCD\end{align*} is a parallelogram

Statement Reason
1. 1.
2. \begin{align*}\overline{AD} \| \overline{BC}\end{align*} 2.
3. \begin{align*}ABCD\end{align*} is a parallelogram 3.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.4. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

parallelogram

A quadrilateral with two pairs of parallel sides. A parallelogram may be a rectangle, a rhombus, or a square, but need not be any of the three.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Quadrilaterals that are Parallelograms.
Please wait...
Please wait...