<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
You are viewing an older version of this Concept. Go to the latest version.

## Ways to show if a quadrilateral has two pairs of parallel sides.

Estimated5 minsto complete
%
Progress
Progress
Estimated5 minsto complete
%

What if you were given four pairs of coordinates that form a quadrilateral? How could you determine if that quadrilateral is a parallelogram? After completing this Concept, you'll be able to use the Parallel Congruent Sides Theorem and other quadrilateral theorems to solve problems like this one.

### Guidance

Recall that a parallelogram is a quadrilateral with two pairs of parallel sides. Even if a quadrilateral is not marked with having two pairs of sides, it still might be a parallelogram. The following is a list of theorems that will help you decide if a quadrilateral is a parallelogram or not.

1) Opposite Sides Theorem Converse: If both pairs of opposite sides of a quadrilateral are congruent, then the figure is a parallelogram.

If then

2) Opposite Angles Theorem Converse: If both pairs of opposite angles of a quadrilateral are congruent, then the figure is a parallelogram.

If then

3) Parallelogram Diagonals Theorem Converse: If the diagonals of a quadrilateral bisect each other, then the figure is a parallelogram.

If then

4) Parallel Congruent Sides Theorem: If a quadrilateral has one set of parallel lines that are also congruent, then it is a parallelogram.

If then

You can use any of the above theorems to help show that a quadrilateral is a parallelogram. If you are working in the $x-y$ plane, you might need to know the formulas shown below to help you use the theorems.

• The Slope Formula, $\frac{y_2 - y_1}{x_2 - x_1}$ . (Remember that if slopes are the same then lines are parallel).
• The Distance Formula, $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ . (This will help you to show that two sides are congruent).
• The Midpoint Formula, $\left ( \frac{x_1 + x_2 }{2} , \frac{y_1 + y_2}{2} \right )$ . (If the midpoints of the diagonals are the same then the diagonals bisect each other).

#### Example A

Prove the Opposite Sides Theorem Converse.

Given : $\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}$

Prove : $ABCD$ is a parallelogram

Statement Reason
1. $\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}$ 1.Given
2. $\overline{DB} \cong \overline{DB}$ 2. Reflexive PoC
3. $\triangle ABD \cong \triangle CDB$ 3. SSS
4. $\angle ABD \cong \angle BDC, \angle ADB \cong \angle DBC$ 4. CPCTC
5. $\overline{AB} \| \overline{DC}, \overline{AD} \| \overline{BC}$ 5. Alternate Interior Angles Converse
6. $ABCD$ is a parallelogram 6. Definition of a parallelogram

#### Example B

Is quadrilateral $EFGH$ a parallelogram? How do you know?

a) By the Opposite Angles Theorem Converse, $EFGH$ is a parallelogram.

b) $EFGH$ is not a parallelogram because the diagonals do not bisect each other.

#### Example C

Is the quadrilateral $ABCD$ a parallelogram?

Let’s use the Parallel Congruent Sides Theorem to see if $ABCD$ is a parallelogram. First, find the length of $AB$ and $CD$ using the distance formula.

$AB & = \sqrt{(-1-3)^2 + (5 - 3)^2} && CD = \sqrt{(2 - 6)^2 + (-2 + 4)^2}\\& = \sqrt{(-4)^2 + 2^2} && = \sqrt{(-4)^2 + 2^2}\\& = \sqrt{16 + 4} && = \sqrt{16 + 4}\\& = \sqrt{20} &&= \sqrt{20}$

Next find the slopes to check if the lines are parallel.

$\text{Slope}\ AB = \frac{5 - 3}{-1-3} = \frac{2}{-4} = -\frac{1}{2} \qquad \text{Slope}\ CD = \frac{-2 +4}{2-6} = \frac{2}{-4} = -\frac{1}{2}$

$AB = CD$ and the slopes are the same (implying that the lines are parallel), so $ABCD$ is a parallelogram.

### Guided Practice

1. Prove the Parallel Congruent Sides Theorem.

Given : $\overline{AB} \| \overline{DC}$ , and $\overline{AB} \cong \overline{DC}$

Prove : $ABCD$ is a parallelogram

2. What value of $x$ would make $ABCD$ a parallelogram?

3. Is the quadrilateral $RSTU$ a parallelogram?

1.

Statement Reason
1. $\overline{AB} \| \overline{DC}$ , and $\overline{AB} \cong \overline{DC}$ 1. Given
2. $\angle ABD \cong \angle BDC$ 2. Alternate Interior Angles
3. $\overline{DB} \cong \overline{DB}$ 3. Reflexive PoC
4. $\triangle ABD \cong \triangle CDB$ 4. SAS
5. $\overline{AD} \cong \overline{BC}$ 5. CPCTC
6. $ABCD$ is a parallelogram 6. Opposite Sides Converse

2. $\overline{AB} \| \overline{DC}$ . By the Parallel Congruent Sides Theorem, $ABCD$ would be a parallelogram if $AB = DC$ .

$5x - 8 & = 2x + 13\\3x & = 21\\x & = 7$

3. Let’s use the Parallelogram Diagonals Converse to see if $RSTU$ is a parallelogram. Find the midpoint of each diagonal.

$&\text{Midpoint of}\ RT = \left ( \frac{-4 + 3}{2},\frac{3 - 4}{2}\right ) = (-0.5,-0.5)\\&\text{Midpoint of}\ SU = \left ( \frac{4 - 5}{2}, \frac{5 - 5}{2} \right ) = (-0.5,0)$

$RSTU$ is not a parallelogram because the midpoints are not the same.

### Practice

For questions 1-12, determine if the quadrilaterals are parallelograms.

For questions 13-18, determine the value of $x$ and $y$ that would make the quadrilateral a parallelogram.

For questions 19-22, determine if $ABCD$ is a parallelogram.

1. $A(8, -1), B(6, 5), C(-7, 2), D(-5, -4)$
2. $A(-5, 8), B(-2, 9), C(3, 4), D(0, 3)$
3. $A(-2, 6), B(4, -4), C(13, -7), D(4, -10)$
4. $A(-9, -1), B(-7, 5), C(3, 8), D(1, 2)$

Fill in the blanks in the proofs below.

1. Opposite Angles Theorem Converse

Given : $\angle A \cong \angle C, \angle D \cong \angle B$

Prove : $ABCD$ is a parallelogram

Statement Reason
1. 1.
2. $m \angle A = m \angle C, m \angle D = m \angle B$ 2.
3. 3. Definition of a quadrilateral
4. $m \angle A + m \angle A + m \angle B + m \angle B = 360^\circ$ 4.
5. 5. Combine Like Terms
6. 6. Division PoE
7. $\angle A$ and $\angle B$ are supplementary $\angle A$ and $\angle D$ are supplementary 7.
8. 8. Consecutive Interior Angles Converse
9. $ABCD$ is a parallelogram 9.
1. Parallelogram Diagonals Theorem Converse

Given : $\overline{AE} \cong \overline{EC}, \overline{DE} \cong \overline{EB}$

Prove : $ABCD$ is a parallelogram

Statement Reason
1. 1.
2. 2. Vertical Angles Theorem
3. $\triangle AED & \cong \triangle CEB\\\triangle AEB & \cong \triangle CED$ 3.
4. 4.
5. $ABCD$ is a parallelogram 5.
1. Given : $\angle ADB \cong \angle CBD, \overline{AD} \cong \overline{BC}$ Prove : $ABCD$ is a parallelogram

Statement Reason
1. 1.
2. $\overline{AD} \| \overline{BC}$ 2.
3. $ABCD$ is a parallelogram 3.

### Vocabulary Language: English Spanish

parallelogram

parallelogram

A quadrilateral with two pairs of parallel sides. A parallelogram may be a rectangle, a rhombus, or a square, but need not be any of the three.