<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Segments from Chords

## Products of the segments of each of two intersecting chords are equal.

Estimated6 minsto complete
%
Progress
Practice Segments from Chords
Progress
Estimated6 minsto complete
%
Segments from Chords

What if you were given a circle with two chords that intersect each other? How could you use the length of some of the segments formed by their intersection to determine the lengths of the unknown segments? After completing this Concept, you'll be able to use the Intersecting Chords Theorem to solve problems like this one.

### Watch This

Segments from Chords CK-12

### Guidance

When we have two chords that intersect inside a circle, as shown below, the two triangles that result are similar.

This makes the corresponding sides in each triangle proportional and leads to a relationship between the segments of the chords, as stated in the Intersecting Chords Theorem.

Intersecting Chords Theorem: If two chords intersect inside a circle so that one is divided into segments of length and and the other into segments of length and then .

#### Example A

Find in each diagram below.

a)

b)

Use the formula from the Intersecting Chords Theorem.

a)

b)

#### Example B

Solve for .

a)

b)

Use the Intersecting Chords Theorem.

a)

b)

#### Example C

Ishmael found a broken piece of a CD in his car. He places a ruler across two points on the rim, and the length of the chord is 9.5 cm. The distance from the midpoint of this chord to the nearest point on the rim is 1.75 cm. Find the diameter of the CD.

Think of this as two chords intersecting each other. If we were to extend the 1.75 cm segment, it would be a diameter. So, if we find in the diagram below and add it to 1.75 cm, we would find the diameter.

Segments from Chords CK-12

-->

### Guided Practice

Find in each diagram below. Simplify any radicals.

1.

2.

3.

For all problems, use the Intersecting Chords Theorem.

1.

2.

3.

### Explore More

Fill in the blanks for each problem below and then solve for the missing segment.

Find in each diagram below. Simplify any radicals.

Find the value of .

1. Suzie found a piece of a broken plate. She places a ruler across two points on the rim, and the length of the chord is 6 inches. The distance from the midpoint of this chord to the nearest point on the rim is 1 inch. Find the diameter of the plate.
2. Fill in the blanks of the proof of the Intersecting Chords Theorem.

Given: Intersecting chords and .

Prove:

Statement Reason
1. Intersecting chords and with segments and . 1.
2. 2. Congruent Inscribed Angles Theorem
3. 3.
4. 4. Corresponding parts of similar triangles are proportional
5. 5.

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 9.9.

### Vocabulary Language: English Spanish

central angle

central angle

An angle formed by two radii and whose vertex is at the center of the circle.
chord

chord

A line segment whose endpoints are on a circle.
circle

circle

The set of all points that are the same distance away from a specific point, called the center.
diameter

diameter

A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
inscribed angle

inscribed angle

An angle with its vertex on the circle and whose sides are chords.
intercepted arc

intercepted arc

The arc that is inside an inscribed angle and whose endpoints are on the angle.

The distance from the center to the outer rim of a circle.
Intersecting Chords Theorem

Intersecting Chords Theorem

According to the Intersecting Chords Theorem, if two chords intersect inside a circle so that one is divided into segments of length a and b and the other into segments of length c and d, then ab = cd.