<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
You are viewing an older version of this Concept. Go to the latest version.

# Segments from Secants

## Relationships of products of sections versus sums of sections of secants.

Estimated8 minsto complete
%
Progress
Practice Segments from Secants
Progress
Estimated8 minsto complete
%
Secant Lines to Circles

In the circle below, , , and . Find .

#### Guidance

Recall that a line that intersects a circle in exactly one point is called a tangent line. A line that intersects a circle in two points is called a secant line. Below, is a secant.

When two secants or a tangent and a secant are drawn, they can interact in four ways. In each case, arcs, angles and line segments have special relationships. These ideas are summarized below, and will be explored further and proved in the examples and practice.

Case #1: Two secants intersect outside the circle.

Relevant Theorems:

•  (This will be explored in Example A)
• (This will be explored in Example B)

Case #2: Two secants intersect inside the circle.

Relevant Theorems:

• (This was previously proved as a property of intersecting chords)
• (This will be explored in Example C)

Case #3: A secant and a tangent intersect on the circle.

Relevant Theorem:

•  (This will be explored in Guided Practice #1)

Case #4: A secant and a tangent intersect outside the circle.

Relevant Theorems:

•  (This will be explored in the practice problems)
•  (This will be explored in the practice problems)

Example A

Prove that .

Solution: Draw chords and .

Two triangles are created, and . Note that both triangles share . Also note that both and are inscribed angles of . Therefore, . Because and have two pairs of congruent angles, they are similar by . This means that corresponding sides of the triangles are proportional. In particular, . This means that .

Example B

Prove that .

Solution: You are trying to prove that the measure of the angle is equal to half the difference between the measures of the red arc and the blue arc. As in Example A, draw chords and .

Consider how the angles are arcs are related.

• (inscribed angle)
•  (inscribed angle)
•  (exterior angle equals the sum of the remote interior angles)

Make two substitutions and you have:

Therefore,

Example C

Prove that .

Solution: This logic of this proof is similar to the logic used in Example B. Start by drawing chord .

Consider how the angles and arcs are related.

•  (inscribed angle)
•  (inscribed angle)
•  (exterior angle equals the sum of the remote interior angles)

Make two substitutions and you have:

Therefore, . Because and are vertical angles, they are congruent and have equal measures. This means .

Concept Problem Revisited

In the circle below, , , and . Find .

This is an example of two secants intersecting outside the circle. The intersection angle of the two secants is equal to half the difference between their intercepted arcs. In other words, . You are given , but you don't know . Use the fact that a full circle is to find .

Now, solve for the measure of .

#### Vocabulary

When a line intersects a circle in exactly one point the line is said to be tangent to the circle or a tangent of the circle.

A line that intersects a circle in two points is a secant line.

A chord is a segment that connects two points on a circle. If a chord passes through the center of the circle then it is a diameter.

#### Guided Practice

1. is tangent to circle  at point . Prove that .

2. . Find .

3. and . Find .

1. Draw a diameter through points  and . This segment will be perpendicular to .

First note that because the two arcs make a semicircle. This means that and thus .

Now consider other angle and arc relationships:

•  (inscribed angle)
•  (two angles make a right angle)

By substitution, . Therefore, .

Consider the two highlighted statements. Both and are equal to . Therefore, .

2. If , then . Therefore, .

3. and . is the average of the measure of the intercepted arcs.

Therefore, .

#### Practice

1. What's the difference between a secant and a tangent?

Use the relationships explored in this concept to solve for or in each circle.

2.

3.

4.

5.

6.

7.

In #8-#12 you will explore Case #4: A secant and a tangent intersect outside the circle.

8. Draw chord . Explain why .

9. Prove that .

10. Prove that .

11. Prove that (Use Example B to help).

12. Prove that .

13. How is the theorem proved in #11-#12 related to the theorem proved in Examples B?

Solve for or in each circle.

14.

15.

### Vocabulary Language: English

AA Similarity Postulate

AA Similarity Postulate

If two angles in one triangle are congruent to two angles in another triangle, then the two triangles are similar.
Congruent

Congruent

Congruent figures are identical in size, shape and measure.
Reflexive Property of Congruence

Reflexive Property of Congruence

$\overline{AB} \cong \overline{AB}$ or $\angle B \cong \angle B$
Secant

Secant

The secant of an angle in a right triangle is the value found by dividing length of the hypotenuse by the length of the side adjacent the given angle. The secant ratio is the reciprocal of the cosine ratio.
secant line

secant line

A secant line is a line that joins two points on a curve.
Tangent line

Tangent line

A tangent line is a line that "just touches" a curve at a single point and no others.
Two Secants Segments Theorem

Two Secants Segments Theorem

Two secants segments theorem states that if you have a point outside a circle and draw two secant lines from it, there is a relationship between the line segments formed.
Inscribed Angle

Inscribed Angle

An inscribed angle is an angle with its vertex on the circle. The measure of an inscribed angle is half the measure of its intercepted arc.