<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Supplementary Angles

Two angles that add to 180 degrees.

Atoms Practice
Estimated4 minsto complete
%
Progress
Practice Supplementary Angles
Practice
Progress
Estimated4 minsto complete
%
Practice Now
Turn In
Supplementary Angles

Supplementary Angles 

Two angles are supplementary when they add up to \begin{align*}180^\circ\end{align*}. Supplementary angles do not have to be congruent or touching.

Measuring Supplementary Angles 

The two angles below are supplementary. If \begin{align*}m \angle MNO = 78^\circ\end{align*} what is \begin{align*}m \angle PQR\end{align*}?

Set up an equation.

\begin{align*}78^\circ + m \angle PQR = 180^\circ\\ m \angle PQR = 102^\circ\end{align*}

 

 

 

 

 

 

Measuring Congruent, Supplementary Angles

What are the measures of two congruent, supplementary angles?

Supplementary angles add up to \begin{align*}180^\circ\end{align*}. Congruent angles have the same measure. Divide \begin{align*}180^\circ\end{align*} by 2, to find the measure of each angle.

\begin{align*}180^\circ \div 2 = 90^\circ\end{align*}

So, two congruent, supplementary angles are right angles, or \begin{align*}90^\circ\end{align*}.

Identifying Supplementary Angles 

Name one pair of supplementary angles in the diagram below.

One example is \begin{align*} \angle INM\end{align*} and \begin{align*} \angle MNL\end{align*}.

 

 

 

 

 

 

 

 

 

Examples 

Find the measure of an angle that is supplementary to \begin{align*}\angle ABC\end{align*} if \begin{align*}m \angle ABC\end{align*} is

Example 1

\begin{align*}45^\circ\end{align*}

=\begin{align*}135^\circ\end{align*}

Example 2

\begin{align*}118^\circ\end{align*}

=\begin{align*}62^\circ\end{align*}

Example 3

\begin{align*}32^\circ\end{align*}

=\begin{align*}148^\circ\end{align*}

Example 4

\begin{align*}x^\circ\end{align*}

=\begin{align*}180-x^\circ\end{align*}

Interactive Practice

 

 

 

 

 

 

 

 

Review

Find the measure of an angle that is supplementary to \begin{align*}\angle ABC\end{align*} if \begin{align*}m\angle ABC\end{align*} is:

  1. \begin{align*}112^\circ\end{align*}
  2. \begin{align*}15^\circ\end{align*}
  3. \begin{align*}97^\circ\end{align*}
  4. \begin{align*}81^\circ\end{align*}
  5. \begin{align*}57^\circ\end{align*}
  6. \begin{align*}(x-y)^\circ\end{align*}
  7. \begin{align*}(x+y)^\circ\end{align*}

Use the diagram below for exercises 8-9. Note that \begin{align*}\overline{NK} \perp \overleftrightarrow{IL}\end{align*}.

  1. Name a pair of supplementary angles.
  1. If \begin{align*}m\angle INJ = 63^\circ\end{align*}, find \begin{align*}m\angle JNL\end{align*}.

For exercises 10-13, determine if the statement is true or false.

  1. Supplementary angles add up to \begin{align*}180^\circ\end{align*}.
  2. Two angles on a straight line are supplementary angles.
  3. To be supplementary, two angles must be touching.
  4. It's possible for two angles in a triangle to be supplementary.

For 14-15, find the value of \begin{align*}x\end{align*}.

Review (Answers)

To view the Review answers, open this PDF file and look for section 1.8. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Supplementary angles

Supplementary angles are two angles whose sum is 180 degrees.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Supplementary Angles.
Please wait...
Please wait...