<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Supplementary and Complementary Angle Pairs

Find missing angle measures for supplementary or complementary angles.

Atoms Practice
%
Progress
Practice
Progress
%
Practice Now
Turn In
Supplementary and Complementary Angle Pairs

Let's Think About It

License: CC BY-NC 3.0

Marco is building a house. He bought lots of wood to make the frame of the house. He wants right angles for his corners. If he uses a piece of wood that is cut at a angle, what must be the angle measure of the other piece of wood that he uses to complete the corner?

In this concept, you will learn how reasoning can help you figure out the measures of missing angles.

Guidance

Some special angle pairs are identified by their sum. If you know the measure of one angle, you can calculate the measure of the second angle. For instance, complementary angles always add up to . Let’s look at an example.

Together, and form a right angle. Therefore they are complementary, and they add up to . has a measure of .

To find the measurement of angle , simply subtract the measure of angle from .

Angle therefore measures . You can check the calculation by adding angles and . The sum must be equal to .

The same process can be used to find the unknown angle in a pair of supplementary angles. Let's look at another example.

Angles and are supplementary angles. If angle measures , what is the measure of angle ?

Supplementary angles have a total of . Subtract the measurement of , from to find the measure of angle .

Angle is . You can check the calculation by adding angles and . Remember, in order to be supplementary angles, their sum must equal .

This process can often be used to find the measure of unknown angles. Use logical reasoning to interpret the information in order to find the unknown measure.

Take a look at the diagram below.

Let's find the value of angle . Apply what you have learned about supplementary angles. Supplementary angles add up to   , and is a straight line. Look at the diagram. The angle and angle together form a straight line, so they are supplementary angles. That means you can set up an equation to solve for .

The equation shows the sum of supplementary angles is . Find the measure of the unknown angle by solving for .

The measure of the unknown angle in this supplementary pair is .

You can check your work by putting this value in for in the equation.

Guided Practice

Solve the following problem.

What is the measure of angle ?

First, set up an equation that represents the relationship between the two angles.

Next, subtract the given angle from the sum of the two angles.

 

Then, calculate the difference.

The difference is .

The answer is angle  .

The measure of the unknown angle is . You can check your answer by putting this value in for in the equation.

Examples

Find the complement or supplement in each example.

Example 1

Angles and are complementary. Angle is . Find the measure of angle .

First, set up an equation that represents the relationship between the angles.


Next, subtract the given angle from the sum of the two angles.


Then, calculate the difference.

The difference is .

The answer is angle  .

Example 2

Angles and are supplementary. Angle is . Find the measure of angle .

First, set up an equation that represents the relationship between the angles.


Next, subtract the given angle from the sum of the two angles.

 

Then, calculate the difference.

The difference is .

The answer is angle  

Example 3

Angles and are supplementary. Angle is . Find the measure of angle .

First, set up an equation that represents the relationship between the angles.


Next, subtract the given angle from the sum of the angles.


Then, calculate the difference.

The difference is .

The answer is angle

Follow Up

License: CC BY-NC 3.0

Remember Marco and his house? If one piece of wood has an angled cut that is , what is the measure of the angled cut for the second piece of wood?

 First, set up an equation that represents the relationship between the two angles.

 

Next, subtract the given angle from the sum of the two angles.

 

Then calculate the difference.

The difference is .

The answer is that the second piece of wood is cut at a angle.

Video Review

Explore More

Find the measure of missing angle for each pair of complementary or supplementary angles.

1. Angles and are complementary. Angle is . Find the measure of angle .

2. Angles and are complementary. Angle is . Find the measure of angle .

3. Angles and are complementary. Angle is . Find the measure of angle .

4. Angles and are complementary. Angle is . Find the measure of angle .

5. Angles and are complementary. Angle is . Find the measure of angle .

6. Angles and are complementary. Angle is . Find the measure of angle .

7. Angles and are complementary. Angle is . Find the measure of angle .

8. Angles and are complementary. Angle is . Find the measure of angle .

9. Angles and are supplementary. Angle is . Find the measure of angle .

10. Angles and are supplementary. Angle is . Find the measure of angle .

11. Angles and are supplementary. Angle is . Find the measure of angle .

12. Angles and are supplementary. Angle is . Find the measure of angle .

13. Angles and are supplementary. Angle is . Find the measure of angle .

14. Angles and are supplementary. Angle is . Find the measure of angle .

15. Angles and are supplementary. Angle is . Find the measure of angle .

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 8.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Acute Angle

An acute angle is an angle with a measure of less than 90 degrees.

Complementary angles

Complementary angles are a pair of angles with a sum of 90^{\circ}.

Obtuse angle

An obtuse angle is an angle greater than 90 degrees but less than 180 degrees.

Straight angle

A straight angle is a straight line equal to 180^{\circ}.

Supplementary angles

Supplementary angles are two angles whose sum is 180 degrees.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0
  2. [2]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Supplementary and Complementary Angle Pairs.
Please wait...
Please wait...