<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Newton's Second Law

The acceleration of an object equals the net force acting on the object divided by the object’s mass.

Atoms Practice
Estimated2 minsto complete
%
Progress
Practice Newton's Second Law
Practice
Progress
Estimated2 minsto complete
%
Practice Now
Newton's Second Law

These boys are racing around the track at Newton’s Skate Park. The boy who can increase his speed the most will win the race. Tony, who is closest to the camera in this picture, is bigger and stronger than the other two boys, so he can apply greater force to his skates.

Q: Does this mean that Tony will win the race?

A: Not necessarily, because force isn’t the only factor that affects acceleration.

Force, Mass, and Acceleration

Whenever an object speeds up, slows down, or changes direction, it accelerates. Acceleration occurs whenever an unbalanced force acts on an object. Two factors affect the acceleration of an object: the net force acting on the object and the object’s mass. Newton’s second law of motion describes how force and mass affect acceleration. The law states that the acceleration of an object equals the net force acting on the object divided by the object’s mass. This can be represented by the equation:

Acceleration=NetforceMass

or a=Fm

Q: While Tony races along on his rollerblades, what net force is acting on the skates?

A: Tony exerts a backward force against the ground, as you can see in the Figure below, first with one skate and then with the other. This force pushes him forward. Although friction partly counters the forward motion of the skates, it is weaker than the force Tony exerts. Therefore, there is a net forward force on the skates.

Skater exerting force

Direct and Inverse Relationships

Newton’s second law shows that there is a direct relationship between force and acceleration. The greater the force that is applied to an object of a given mass, the more the object will accelerate. For example, doubling the force on the object doubles its acceleration.

The relationship between mass and acceleration is different. It is an inverse relationship. In an inverse relationship, when one variable increases, the other variable decreases. The greater the mass of an object, the less it will accelerate when a given force is applied. For example, doubling the mass of an object results in only half as much acceleration for the same amount of force.

Q: Tony has greater mass than the other two boys he is racing (pictured in the opening image). How will this affect his acceleration around the track?

A: Tony’s greater mass will result in less acceleration for the same amount of force.

Summary

  • Newton’s second law of motion states that the acceleration of an object equals the net force acting on the object divided by the object’s mass.
  • According to the second law, there is a direct relationship between force and acceleration and an inverse relationship between mass and acceleration.

Review

  1. State Newton’s second law of motion.
  2. How can Newton’s second law of motion be represented with an equation?
  3. If the net force acting on an object doubles, how will the object’s acceleration be affected?
  4. Tony has a mass of 50 kg, and his friend Sam has a mass of 45 kg. Assume that both friends push off on their rollerblades with the same force. Explain which boy will have greater acceleration.

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More

Vocabulary

Newton’s second law of motion

Law stating that the acceleration of an object equals the net force acting on the object divided by the object’s mass.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Newton's Second Law.
Please wait...
Please wait...