<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Permutation Problems

Using the nPr function found in the Math menu under PRB  on the TI calculator

Atoms Practice
Estimated6 minsto complete
%
Progress
Practice Permutation Problems
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated6 minsto complete
%
Practice Now
Turn In
Permutation Problems

Permutation Problems 

To calculate permutations (\begin{align*}nPr\end{align*}nPr) on the TI calculator, first enter the \begin{align*}n\end{align*}n value, and then press \begin{align*}\boxed{\text{MATH}}\end{align*}MATH. You should see menus across the top of the screen. You want the fourth menu: PRB (arrow right 3 times). The PRB menu should appear as follows:

You will see several options, with \begin{align*}nPr\end{align*}nPr being the second. Press \begin{align*}\boxed{2}\end{align*}2, and then enter the \begin{align*}r\end{align*}r value. Finally, press \begin{align*}\boxed{\text{ENTER}}\end{align*}ENTER to calculate the answer.

 

 

Calculating Permutations 

1. Compute \begin{align*}{_9}P_5\end{align*}9P5 using your TI calculator.

To find the answer, enter the following into your TI calculator:

\begin{align*}\boxed{9} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{5} \ \boxed{\text{ENTER}}\end{align*}

After pressing \begin{align*}\boxed{\text{ENTER}}\end{align*}, you should see the following on your calculator's screen:

Therefore, \begin{align*}{_9}P_5= 15,120\end{align*}.

2. In how many ways can first and second place be awarded to 10 people? Compute the answer using your TI calculator.

There are 10 people \begin{align*}(n = 10)\end{align*}, and there are 2 prize winners \begin{align*}(r = 2)\end{align*}, so to find the answer, enter the following into your TI calculator:

\begin{align*}\boxed{10} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{2} \ \boxed{\text{ENTER}}\end{align*}

After pressing \begin{align*}\boxed{\text{ENTER}}\end{align*}, you should see the following on your calculator's screen:

Therefore, \begin{align*}{_{10}}P_2= 90\end{align*}, which means that the number of ways that first and second place can be awarded to 10 people is 90.

3. In how many ways can 3 favorite desserts be listed in order from a menu of 10? Compute the answer using your TI calculator.

There are 10 menu items \begin{align*}(n = 10)\end{align*}, and you are choosing 3 favorite desserts \begin{align*}(r = 3)\end{align*} in order, so to find the answer, enter the following into your TI calculator:

\begin{align*}\boxed{10} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{3} \ \boxed{\text{ENTER}}\end{align*}

After pressing \begin{align*}\boxed{\text{ENTER}}\end{align*}, you should see the following on your calculator's screen:

Therefore, \begin{align*}{_{10}}P_3= 720\end{align*}, which means that the number of ways that 3 favorite desserts can be listed in order from a menu of 10 is 720.

 

-->

Example

Example 1

Verify that the \begin{align*}nPr\end{align*} option on the PRB menu of the TI calculator works by calculating \begin{align*}{_{18}}P_{18}\end{align*} with both this option and with the factorial function. Note that with the TI calculator, you can find the factorial function by pressing \begin{align*}\boxed{\text{MATH}}\end{align*}, pressing the right arrow 3 times, and pressing \begin{align*}\boxed{4}\end{align*}.

First, lets compute \begin{align*}{_{18}}P_{18}\end{align*} with the factorial function. Remember, the formula to solve permutations like these is:

\begin{align*}{_n}P_r=\frac{n!}{(n-r)!}\end{align*}

This means that \begin{align*}{_{18}}P_{18}\end{align*} can be written as follows:

\begin{align*}{_{18}}P_{18} &= \frac{18!}{(18-18)!}\\ {_{18}}P_{18} &= \frac{18!}{0!}\\ {_{18}}P_{18} &= \frac{18!}{1}\\ {_{18}}P_{18} &= 18!\end{align*}

To find 18!, enter the following into your TI calculator:

\begin{align*}\boxed{1} \ \boxed{8} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{4} \ (\text{!}) \ \boxed{\text{ENTER}}\end{align*}

After pressing \begin{align*}\boxed{\text{ENTER}}\end{align*}, you should see the following on your calculator's screen:

Now let's compute \begin{align*}{_{18}}P_{18}\end{align*} with the \begin{align*}nPr\end{align*} option on the PRB menu.

To find the answer, enter the following into your TI calculator:

\begin{align*}\boxed{1} \ \boxed{8} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{1} \ \boxed{8} \ \boxed{\text{ENTER}}\end{align*}

After pressing \begin{align*}\boxed{\text{ENTER}}\end{align*}, you should see the following on your calculator's screen:

The answers for the 2 methods are the same, so the \begin{align*}nPr\end{align*} option on the PRB menu of the TI calculator does work.

Review

Enter each of the following sets of keystrokes into your TI calculator to compute the corresponding permutations.

  1. \begin{align*}\boxed{1} \ \boxed{2} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{8} \ \boxed{\text{ENTER}}\end{align*}
  2. \begin{align*}\boxed{1} \ \boxed{5} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{5} \ \boxed{\text{ENTER}}\end{align*}
  3. \begin{align*}\boxed{2} \ \boxed{0} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{7} \ \boxed{\text{ENTER}}\end{align*}
  4. \begin{align*}\boxed{1} \ \boxed{1} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{6} \ \boxed{\text{ENTER}}\end{align*}
  5. \begin{align*}\boxed{1} \ \boxed{4} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{4} \ \boxed{\text{ENTER}}\end{align*}
  6. \begin{align*}\boxed{1} \ \boxed{9} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{3} \ \boxed{\text{ENTER}}\end{align*}
  7. \begin{align*}\boxed{2} \ \boxed{2} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{9} \ \boxed{\text{ENTER}}\end{align*}
  8. \begin{align*}\boxed{1} \ \boxed{8} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{2} \ \boxed{\text{ENTER}}\end{align*}
  9. \begin{align*}\boxed{2} \ \boxed{5} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{3} \ \boxed{\text{ENTER}}\end{align*}
  10. \begin{align*}\boxed{1} \ \boxed{6} \ \boxed{\text{MATH}} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ \boxed{\blacktriangleright} \ (\text{PRB}) \ \boxed{2} \ (\text{nPr}) \ \boxed{6} \ \boxed{\text{ENTER}}\end{align*}

Review (Answers)

To view the Review answers, open this PDF file and look for section 2.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

n value

When calculating permutations with the TI calculator, the n value is the number of objects from which you are choosing, and the r value is the number of objects chosen.

r value

When calculating permutations with the TI calculator, the n value is the number of objects from which you are choosing, and the r value is the number of objects chosen.

combination

Combinations are distinct arrangements of a specified number of objects without regard to order of selection from a specified set.

factorial

The factorial of a whole number n is the product of the positive integers from 1 to n. The symbol "!" denotes factorial. n! = 1 \cdot 2 \cdot 3 \cdot 4...\cdot (n-1) \cdot n .

n value

When calculating permutations with the TI calculator, the n value is the number of objects from which you are choosing.

Permutation

A permutation is an arrangement of objects where order is important.

r value

When calculating permutations with the TI calculator, the r value is the number of objects chosen.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Permutation Problems.
Please wait...
Please wait...