Suppose you have the set of integers from 1 to 19. How would you represent the set of odd numbers within that range and the set of prime numbers within that range? Can you think of an easy way to represent the union and intersection of those two different sets of numbers?

### Watch This

First watch this video to learn about Venn diagrams.

CK-12 Foundation: Chapter1VennDiagramsA

Then watch this video to see some examples.

CK-12 Foundation: Chapter1VennDiagramsB

Watch this video for more help.

James Sousa Set Operations and Venn Diagrams - Part 2 of 2

### Guidance

In **probability**, a **Venn diagram** is a graphic organizer that shows a visual representation for all possible **outcomes** of an experiment and the events of the experiment in ovals. Normally, in probability, the Venn diagram will be a box with overlapping ovals inside. Look at the diagram below:

The \begin{align*}S\end{align*}**sample space**. The ovals \begin{align*}A\end{align*}

#### Example A

2 coins are tossed one after the other. Event \begin{align*}A\end{align*}

We know that:

\begin{align*}S &= \{HH,HT, TH, TT\}\\ A &= \{HH,HT\}\\ B &= \{HH,TH\}\end{align*}

Notice that event \begin{align*}A\end{align*}

#### Example B

Event \begin{align*}A\end{align*}

We know that:

\begin{align*}S =\end{align*}

\begin{align*}A =\end{align*}

\begin{align*}B =\end{align*}

Notice that the overlapping oval for \begin{align*}A\end{align*}

In a Venn diagram, when events \begin{align*}A\end{align*}**\begin{align*}\cap\end{align*} ∩**. Therefore, \begin{align*}A \cap B\end{align*} is the intersection of events \begin{align*}A\end{align*} and \begin{align*}B\end{align*} and can be used to find the probability of both events occurring. If, in a Venn diagram, either \begin{align*}A\end{align*} or \begin{align*}B\end{align*} occurs, the symbol is

**\begin{align*}\cup\end{align*}**. This symbol would represent the union of events \begin{align*}A\end{align*} and \begin{align*}B\end{align*}, where the outcome would be in either \begin{align*}A\end{align*} or \begin{align*}B\end{align*}.

#### Example C

You are asked to roll a die. Event \begin{align*}A\end{align*} is the event of rolling a 1, 2, or a 3. Event \begin{align*}B\end{align*} is the event of rolling a 3, 4, or a 5. Draw a Venn diagram to represent this example. What is \begin{align*}A \cap B\end{align*}? What is \begin{align*}A \cup B\end{align*}?

We know that:

\begin{align*}S &= \{1, 2, 3, 4, 5, 6\}\\ A &= \{1, 2, 3\}\\ B &= \{3, 4, 5\}\end{align*}

\begin{align*}A \cap B &= \{3\}\\ A \cup B &= \{1, 2, 3, 4, 5\}\end{align*}

-->

### Guided Practice

Let’s say our sample space is the numbers from 1 to 10. Event \begin{align*}A\end{align*} is randomly choosing one of the odd numbers from 1 to 10, and event \begin{align*}B\end{align*} is randomly choosing one of the prime numbers from 1 to 10. Remember that a prime number is a number whose only factors are 1 and itself. Draw a Venn diagram to represent this example. What is \begin{align*}A \cap B\end{align*}? What is \begin{align*}A \cup B\end{align*}?

**Answer:**

We know that:

\begin{align*}S &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\\ A &= \{1, 3, 5, 7, 9\}\\ B &= \{2, 3, 5, 7\}\end{align*}

Notice that 3 of the prime numbers are part of both sets and are, therefore, in the overlapping part of the Venn diagram. The numbers 4, 6, 8, and 10 are the numbers not part of \begin{align*}A\end{align*} or \begin{align*}B\end{align*}, but they are still members of the sample space.

\begin{align*}A \cap B &= \{3, 5, 7\}\\ A \cup B &= \{1, 2, 3, 5, 7, 9\}\end{align*}

### Explore More

- \begin{align*}ABC\end{align*} High School is debating whether or not to write a policy where all students must have uniforms and wear them during school hours. In a survey, 45% of the students wanted uniforms, 35% did not, and 10% said they did not mind a uniform and did not care if there was no uniform. Represent this information in a Venn diagram.
- \begin{align*}ABC\end{align*} High School is debating whether or not to write a policy where all students must have uniforms and wear them during school hours. In a survey, 45% of the students wanted uniforms, and 55% did not. Represent this information in a Venn diagram.
- For question 2, calculate the probability that a person selected at random from \begin{align*}ABC\end{align*} High School will want the school to have uniforms or will not want the school to have uniforms.
- Suppose \begin{align*}A=\{5, 6, 8, 10, 12\}\end{align*} and \begin{align*}B=\{8, 9, 12, 13, 14\}\end{align*}. What is \begin{align*}A \cup B\end{align*}?
- Suppose \begin{align*}A=\{1, 7, 13, 17, 21, 25\}\end{align*} and \begin{align*}B=\{7, 14, 21, 28, 35, 42\}\end{align*}. What is \begin{align*}A \cap B\end{align*}?
- In Jason's homeroom class, there are 11 students who have brown eyes, 5 students who are left-handed, and 3 students who have brown eyes and are left-handed. If there are a total of 26 students in Jason's homeroom class, how many of them neither have brown eyes nor are left-handed?
- If event \begin{align*}A\end{align*} is randomly choosing a vowel from the letters of the alphabet, and event \begin{align*}B\end{align*} is randomly choosing a consonant from the letters of the alphabet, do the ovals in the Venn diagram that represents this situation overlap? Explain your answer.
- Use the following Venn diagram to answer the question:

If the 2 ovals in the Venn diagram above represent events \begin{align*}A\end{align*} and \begin{align*}B\end{align*}, respectively, what is \begin{align*}A \cup B\end{align*}?

- Use the following Venn diagram to answer the question:

If the 2 ovals in the Venn diagram above represent events \begin{align*}A\end{align*} and \begin{align*}B\end{align*}, respectively, what is \begin{align*}A \cap B\end{align*}?

- In the Venn diagram in question 9, what set represents event \begin{align*}A\end{align*}? What set represents event \begin{align*}B\end{align*}?