Chapter 12: TE Rational Equations and Functions; Topics in Statistics
Overview
In this chapter, students are introduced to inverse variation. They graph rational functions and divide polynomials. After being introduced to rational expressions they learn to add, subtract, multiply, and divide them. Students then solve rational equations. The chapter ends with surveys and sampling methods.
Suggested pacing:

Inverse Variation Models  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr 
Graphs of Rational Functions  \begin{align*}12 \;\mathrm{hrs}\end{align*}
1−2hrs 
Division of Polynomials  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr 
Rational Expressions  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr 
Multiplication and Division of Rational Expressions  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr 
Addition and Subtraction of Rational Expressions  \begin{align*}12 \;\mathrm{hrs}\end{align*}
1−2hrs 
Solutions of Rational Equations  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr 
Surveys and Samples  \begin{align*}1 \;\mathrm{hr}\end{align*}
1hr
ProblemSolving Strand for Mathematics
The first portion of this chapter cements connections between algebraic and geometric ways (graphical displays) of representing functions and relationships in mathematics. Vertical, horizontal, and oblique asymptotes visually confirm what students have learned earlier in their studies: division by zero is undefined in our number system. The connection between inverse variation models and the graphs of rational functions is presented in the examples and review questions which pose realworld problems using rational functions.
In the midlesson of this unit, the division of polynomials is related back once again to graphing and the horizontal asymptote studied previously. In the lesson, Rational Expressions, values that are excluded when simplifying rational expressions are shown to be those very values that are vertical asymptotes, values that cannot exist for \begin{align*}x\end{align*}
The last lesson of the unit looks closely at topics in statistics. Students are asked to identify biased questions as well as biased sample populations and to display, analyze, and interpret statistical data effectively. Let students know they will have a survey project to complete before introducing the Surveys and Samples materials lesson and before reviewing Examples 3 and 4, Designing a Survey, and Examples 5 and 6, Display, Analyze, and Interpret Data, since the information needs to be seen in context in order for its value to be recognized.
Alignment with the NCTM Process Standards
The first lessons of this chapter consistently recognize and use connections among mathematical ideas (CON.1), encourage students to understand how mathematical ideas interconnect and build on one another to produce a coherent whole (CON.2), and—especially in realworld problem solving scenarios—recognize and apply mathematics in contexts outside of mathematics (CON.3). In the lessons, Rational Expressions and Solutions of Rational Equations, classic work and motion problems are presented so as to put these problemsolving techniques into meaningful perspective (PS.1, PS.2, and PS.3). In the Surveys and Samples lesson, students create and use representations to organize, record, and communicate mathematical ideas (R.1); select, apply, and translate among mathematical representations to solve problems (R.2); and use representations to model and interpret physical, social, and mathematical phenomena (R.3).
 CON.1  Recognize and use connections among mathematical ideas.
 CON.2  Understand how mathematical ideas interconnect and build on one another to produce a coherent whole.
 CON.3  Recognize and apply mathematics in contexts outside of mathematics.
 PS.1  Build new mathematical knowledge through problem solving.
 PS.2  Solve problems that arise in mathematics and in other contexts.
 PS.3  Apply and adapt a variety of appropriate strategies to solve problems.
 R.1  Create and use representations to organize, record, and communicate mathematical ideas.
 R.2  Select, apply, and translate among mathematical representations to solve problems.
 R.3  Use representations to model and interpret physical, social, and mathematical phenomena.
 12.1.
Inverse Variation Models
 12.2.
Graphs of Rational Functions
 12.3.
Division of Polynomials
 12.4.
Rational Expressions
 12.5.
Multiplication and Division of Rational Expressions
 12.6.
Addition and Subtraction of Rational Expressions
 12.7.
Solutions of Rational Equations
 12.8.
Surveys and Samples
Chapter Summary
Image Attributions
To add resources, you must be the owner of the FlexBook® textbook. Please Customize the FlexBook® textbook.