8.3: Perspective Drawing
This activity can be used to supplement the "Know What?" from Chapter 7, Lesson 6.'
The student worksheets for this activity are at the end of Chapter 12 because this activity can also be used at the end of the year. The link is below.
ID: 10033
Time required: 60 minutes
Activity Overview
In this activity, students draw figures in one- and two-point perspective and compare and contrast the two types of drawings. They then create an isometric drawing and compare it to their drawings in perspective.
Topic: 3–Dimensional Geometry
- Construct 3- dimensional prisms and pyramids.
- Record the number of faces, edges, and vertices of prisms.
Teacher Preparation and Notes
- Perspective drawings can be taught at any time in a geometry curriculum, but are most appropriate after lessons on parallel and perpendicular lines, three-dimensional figures, and symmetry.
- Throughout the activity, students use many drawing and construction tools, such as the Segment, Parallel, and Perpendicular tools. In this document, the first use of a tool is by name and accompanied by its location within the menu structure. For subsequent uses, the tool may be mentioned by name or its function, and the menu location is omitted.
- This activity is designed to have students explore individually or in pairs.
- To download Cabri Jr, go to http://www.education.ti.com/calculators/downloads/US/Software/Detail?id=258#.
- To download the calculator files, go to http://www.education.ti.com/calculators/downloads/US/Activities/Detail?id=10033 and select RECPRISM, TRIPRISM, TWOPERSP, ISODRAW.
Associated Materials
- Student Worksheet: Perspective Drawing http://www.ck12.org/flexr/chapter/9697, scroll down to the third activity.
- Cabri Jr. Application
- RECPRISM.8xv, TRIPRISM.8xv, TWOPERSP.8xv, and ISODRAW.8xv
Problem 1 – One-point perspective
Students will open the Cabri Jr. file RECPRISM and find a vaishing point
They are to use the Segment tool from the
Next, they will create
To do this, they will need to do the following:
- Place a point
F onAB¯¯¯¯¯¯¯¯ . (F2 > Point > Point On)
Construct a line through
(F3 > Parallel)
- Plot point
G at the intersection of the parallel line andAC¯¯¯¯¯¯¯¯ .(F2 > Point > Intersection) - Hide the line. (F5 > Hide/Show > Object)
- Draw
FG¯¯¯¯¯¯¯¯ .
Students can now hide the vanishing segments,
Ask students if they are satisfied that this drawing completely represents a rectangular prism. Have them drag point
To complete the prism, students next need to construct
To show all six edges, students should draw a segment connecting
Depending on the topics you have recently covered in class, you can now have students identify parallel, intersecting, and skew lines; count faces, vertices, and edges; or discuss the similarity of rectangles
When students have finished exploring their prisms, they may wish to hide or dash the edges that would not be visible if the figure were not transparent. The appearance of the edges may be altered using the Display tool (F5 > Display).
Students are to open TRIPRISM and create a triangular prism in one-point perspective on their own. Be sure to circulate around the room and assist students as needed.
Allow students a few minutes to explore the figure by dragging point
Problem 2 – Two-point perspective
The Cabri Jr. file TWOPERSP contains two vanishing points,
Next, students will then use the Segment tool to draw the vanishing segments
The top and bottom edges of those faces, \begin{align*}\overline{CE}\end{align*}, \begin{align*}\overline{CG}\end{align*}, \begin{align*}\overline{DF}\end{align*}, and \begin{align*}\overline{DH}\end{align*} may be drawn as well.
Students should now hide the four vanishing segments, and then draw four more: from \begin{align*}E\end{align*} and \begin{align*}F\end{align*} to \begin{align*}B\end{align*} and from \begin{align*}G\end{align*} and \begin{align*}H\end{align*} to \begin{align*}A\end{align*}.
The intersection of the upper two vanishing segments and that of the lower two vanishing segments should be plotted and a segment drawn between them to form the last vertical edge, \begin{align*}\overline{JK}\end{align*}.
The vanishing segments may then be hidden so that students can draw the remaining edges of the prism.
As before, allow students some time to drag edges, vertices, and vanishing points, observing how the prism changes as they do so. (Dragging \begin{align*}\overline{CD}\end{align*} is very interesting!) Again, students can either hide or dash any “hidden edges.”
Problem 3 – An isometric drawing
Using ISODRAW, students will construct an isometric drawing of a rectangular prism. The three segments shown represent the three “front” edges of the prism, and each of the angles the segments form measures \begin{align*}120^\circ\end{align*}. Students should first use the Parallel, Intersection, Hide/Show, and Segment tools to construct \begin{align*}\overline{AE}\end{align*}, \begin{align*}\overline{CF}\end{align*}, \begin{align*}\overline{DE}\end{align*}, and \begin{align*}\overline{DF}\end{align*}, as shown in the diagram to the right.
They may then use the same sequence of tools once more to construct the remaining edges: \begin{align*}\overline{AG}\end{align*}, \begin{align*}\overline{CG}\end{align*}, \begin{align*}\overline{EH}\end{align*}, \begin{align*}\overline{FH}\end{align*}, and \begin{align*}\overline{GH}\end{align*}.
After completing the isometric drawing, students should compare it to the perspective drawings from Problems 1 and 2. As a similarity, students may identify that right angles “in real-life” do not actually measure \begin{align*}90^\circ\end{align*} in the drawings. As a difference, all parallel lines “in real-life” are parallel in an isometric drawing, whereas in perspective drawings, some parallel lines actually “meet” at the vanishing point.
Notes/Highlights Having trouble? Report an issue.
Color | Highlighted Text | Notes | |
---|---|---|---|
Show More |