<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Basic Inverse Trigonometric Functions

Apply inverse trig ratios to determine the measure of unknown angles

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Basic Inverse Trigonometric Functions
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Inverse Trig Functions and Solving Right Triangles

A right triangle has legs that measure 2 units and units. What are the measures of the triangle's acute angles?

Inverse of Trigonometric Functions

We have used the trigonometric functions sine, cosine and tangent to find the ratio of particular sides in a right triangle given an angle. In this concept we will use the inverses of these functions, , and , to find the angle measure when the ratio of the side lengths is known. When we type into our calculator, the calculator goes to a table and finds the trig ratio associated with , which is . When we use an inverse function we tell the calculator to look up the ratio and give us the angle measure. For example: . On your calculator you would press to get and then type in , close the parenthesis and press ENTER. Your calculator screen should read when you press ENTER.

Let's find the measure of angle associated with the following ratios and round answers to the nearest degree.

Using the calculator we get the following:

Now, let's find the measures of the unknown angles in the triangle shown and round answers to the nearest degree.

 We can solve for either or first. If we choose to solve for first, the 23 is opposite and 31 is adjacent so we will use the tangent ratio.

Recall that in a right triangle, the acute angles are always complementary, so , so . We can also use the side lengths an a trig ratio to solve for :

Finally, let's solve the right triangle shown below and round all answers to the nearest tenth.

We can solve for either angle or angle first. If we choose to solve for angle first, then 8 is the hypotenuse and 5 is the opposite side length so we will use the sine ratio.

Now we can find two different ways.

Method 1: We can using trigonometry and the cosine ratio:

Method 2: We can subtract from : since the acute angles in a right triangle are always complimentary.

Either method is valid, but be careful with Method 2 because a miscalculation of angle would make the measure you get for angle incorrect as well.

     

 

Examples

Example 1

Earlier, you were asked to find the measures of the triangle's acute angles. 

First, let's find the hypotenuse, then we can solve for either angle.

One of the acute angles will have a sine of .

Now we can find by subtracting from : since the acute angles in a right triangle are always complimentary.

Example 2

Find the measure of angle .

Example 3

Find the measure of angle .

Example 4

Find the measure of angle .

Example 5

Find the measures of the unknown angles in the triangle shown. Round answers to the nearest degree.


Example 6

Solve the triangle. Round side lengths to the nearest tenth and angles to the nearest degree.

Review

Use your calculator to find the measure of angle . Round answers to the nearest degree.

Find the measures of the unknown acute angles. Round measures to the nearest degree.

Solve the following right triangles. Round angle measures to the nearest degree and side lengths to the nearest tenth.

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 13.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Basic Inverse Trigonometric Functions.
Please wait...
Please wait...