<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

DeMoivre's Theorem and nth Roots

Raise complex numbers to powers or find their roots.

Atoms Practice
Estimated10 minsto complete
Practice DeMoivre's Theorem and nth Roots
This indicates how strong in your memory this concept is
Estimated10 minsto complete
Practice Now
Turn In
DeMoivre's Theorem and nth Roots

You are in math class one day when your teacher asks you to find . Are you able to find roots of complex numbers

De Moivre's Theorem and nth Roots

Other sections in this course have explored all of the basic operations of arithmetic as they apply to complex numbers in standard form and in polar form. The last discovery is that of taking roots of complex numbers in polar form. Using De Moivre’s Theorem we can develop another general rule – one for finding the root of a complex number written in polar form.

As before, let

and let the

root of


. So, in general,



From this derivation, we can conclude that or and . Therefore, for any integer , is an root of if and . Therefore, the general rule for finding the roots of a complex number if is: .

Let's solve the following problems and leave in degrees.

1. Find the two square roots of .

Express in polar form.

To find the other root, add to .

2. Express in polar form:

In standard form: .

3. Calculate

Using DeMoivres Theorem for fractional powers, we get:


Example 1

Earlier, you were asked to solve .

Finding the two square roots of involves first converting the number to polar form:

For the radius:

And the angle:

To find the other root, add to .

Example 2

Find .

Example 3

Find the principal root of . Remember the principal root is the positive root i.e. so the principal root is +3.

In standard form and this is the principal root of .

Example 4

Find the fourth roots of .

in polar form is:


Find the cube roots of each complex number. Write your answers in standard form.

Find the principal fifth roots of each complex number. Write your answers in standard form.

  1. Find the sixth roots of -64 and plot them on the complex plane.
  2. How many solutions could the equation have? Explain.
  3. Solve . Use your answer to #13 to help you.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.13. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


n^{th} roots of unity

The n^{th} roots of unity are the n^{th} roots of the number 1.

complex number

A complex number is the sum of a real number and an imaginary number, written in the form a + bi.

complex plane

The complex plane is the graphical representation of the set of all complex numbers.

De Moivre's Theorem

De Moivre's theorem is the only practical manual method for identifying the powers or roots of complex numbers. The theorem states that if z= r(\cos \theta + i \sin \theta) is a complex number in r cis \theta form and n is a positive integer, then z^n=r^n (\cos (n\theta ) + i\sin (n\theta )).

trigonometric polar form

To write a complex number in trigonometric form means to write it in the form r\cos\theta+ri\sin\theta. rcis\theta is shorthand for this expression.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for DeMoivre's Theorem and nth Roots.
Please wait...
Please wait...