Dismiss
Skip Navigation

Derivation of the Triangle Area Formula

Derive and apply area equals half the product of two sides and the sine of the included angle.

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Derivation of the Triangle Area Formula
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Area of a Triangle

Toby draws a triangle that has two side lengths of 8 inches and 5 inches. He measures the included angle with a protractor and gets . What is the area of this triangle?

Area of a Triangle

Recall the non right triangle for which we derived the law of sine.

We are most familiar with the area formula: where the base, , is the side length which is perpendicular to the altitude. If we consider angle in the diagram, we can write the following trigonometric expression for the altitude of the triangle, :

No we can replace in the formula with and the side perpendicular to is the base, . Our new area formula is thus:

It is important to note that is the angle between sides and and that any two sides and the included angle can be used in the formula.

Let's find the area of the following triangles.

We are given two sides and the included angle so let , and . Now we can use the formula to find the area of the triangle:

In this triangle we do not have two sides and the included angle. We must first find another side length using the Law of Sines. We can find the third angle using the triangle sum: . Use the Law of Sines to find the side length opposite :

We now have two sides and the included angle and can use the area formula:

Finally, given , and , find the area of .

Here we are given two sides and the included angle. We can adjust the formula to represent the sides and angle we are given: . It really doesn’t matter which “letters” are in the formula as long as they represent two sides and the included angle (the angle between the two sides.) Now put in our values to find the area: .

Examples

Example 1

Earlier, you were asked to find the area of the triangle that has two side lengths of 8 inches and 5 inches and an included angle of .

We are given two sides and the included angle so let , and . Now we can use the formula to find the area of the triangle:

Find the area of each of the triangles below. Round answers to the nearest square unit.

Example 2

Two sides and the included angle are given so .

Example 3

Find side first: , so . Next find .

Using the area formula, .

Example 4

Find . Find a second side: , so .

Using the area formula, .

Review

Find the area of each of the triangles below. Round your answers to the nearest square unit.

  1. The area of is 66 square units. If two sides of the triangle are 11 and 21 units, what is the measure of the included angle? Is there more than one possible value? Explain.
  2. A triangular garden is bounded on one side by a 20 ft long barn and a second side is bounded by a 25 ft long fence. If the barn and the fence meet at a angle, what is the area of the garden if the third side is the length of the segment between the ends of the fence and the barn?
  3. A contractor is constructing a counter top in the shape of an equilateral triangle with side lengths 3 ft. If the countertop material costs $25 per square foot, how much will the countertop cost?

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 13.14.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Derivation of the Triangle Area Formula.
Please wait...
Please wait...