<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Determination of Unknown Angles Using Law of Cosines

Find unknown angle given lengths of all 3 sides

Atoms Practice
Estimated10 minsto complete
Practice Determination of Unknown Angles Using Law of Cosines
This indicates how strong in your memory this concept is
Estimated10 minsto complete
Practice Now
Turn In
Law of Cosines with SSS

Sarine draws a triangle. She measures the length of the sides and records her measurements as follows. What is the measure of angle C of the triangle?

\begin{align*}a=3\\ b=4\\ c=5\end{align*}a=3b=4c=5

Learning Objectives

  • Use the law of cosines to find the measure of an angle when SSS measurements are known.


The Law of Cosines, \begin{align*}a^2+b^2-2ab \cos C\end{align*}a2+b22abcosC, can be rearranged to facilitate the calculation of the measure of angle \begin{align*}C\end{align*}C when \begin{align*}a, b\end{align*}a,b and \begin{align*}c\end{align*}c are all known lengths.

\begin{align*}a^2+b^2-2ab \cos C &=c^2 \\ a^2+b^2-c^2 &=2ab \cos C \\ \frac{a^2+b^2-c^2}{2ab} &=\cos C\end{align*}a2+b22abcosCa2+b2c2a2+b2c22ab=c2=2abcosC=cosC

which can be further manipulated to \begin{align*}C=\cos^{-1} \left(\frac{a^2+b^2-c^2}{2ab} \right)\end{align*}C=cos1(a2+b2c22ab).

Example A

Find the measure of the largest angle in the triangle with side lengths 12, 18 and 21.

Solution: First, we must determine which angle will be the largest. Recall from Geometry that the longest side is opposite the largest angle. The longest side is 21 so we will let \begin{align*}c = 21\end{align*}c=21 since \begin{align*}C\end{align*}C is the angle we are trying to find. Let \begin{align*}a =12\end{align*}a=12 and \begin{align*}b = 18\end{align*}b=18 and use the formula to solve for \begin{align*}C\end{align*}C as shown. It doesn’t matter which sides we assign to \begin{align*}a\end{align*}a and \begin{align*}b\end{align*}b. They are interchangeable in the formula.

\begin{align*}m \angle C=\cos^{-1} \left(\frac{12^2+18^2-21^2}{2(12)(18)} \right) \approx 86^\circ\end{align*}mC=cos1(122+1822122(12)(18))86

Note: Be careful to put parenthesis around the entire numerator and entire denominator on the calculator to ensure the proper order of operations. Your calculator screen should look like this:


Example B

Find the value of \begin{align*}x\end{align*}x, to the nearest degree.

Solution: The angle with measure \begin{align*}x^\circ\end{align*}x will be angle \begin{align*}C\end{align*}C so \begin{align*}c = 16, a = 22\end{align*}c=16,a=22 and \begin{align*}b = 8\end{align*}b=8. Remember, \begin{align*}a\end{align*}a and \begin{align*}b\end{align*}b are interchangeable in the formula. Now we can replace the variables with the known measures and solve.

\begin{align*}\cos^{-1} \left(\frac{22^2+8^2-16^2}{2(22)(8)} \right) \approx 34^\circ\end{align*}cos1(222+821622(22)(8))34

Example C

Find the \begin{align*}m \angle A\end{align*}mA, if \begin{align*}a = 10, b = 15\end{align*}a=10,b=15 and \begin{align*}c = 21\end{align*}c=21.

Solution: First, let’s rearrange the formula to reflect the sides given and requested angle:

\begin{align*}\cos A=\left(\frac{b^2+c^2-a^2}{2(b)(c)} \right)\end{align*}cosA=(b2+c2a22(b)(c)), now plug in our values \begin{align*}m \angle A=\cos^{-1} \left(\frac{15^2+21^2-10^2}{2(15)(21)} \right) \approx 26^\circ\end{align*}mA=cos1(152+2121022(15)(21))26

Concept Problem Revisit

We can use the manipulated Law of Cosines to solve for C.

\begin{align*}C=\cos^{-1} \frac{3^2+4^2-5^2}{2(3)(4)} \\ C=\cos^{-1} \frac{9 + 16 - 25}{24}\\ C=\cos^{-1} \frac{0}{24} = \cos^{-1} 0\\ C = 90^\circ\end{align*}C=cos132+42522(3)(4)C=cos19+162524C=cos1024=cos10C=90

Therefore, the triangle is a right triangle.

Guided Practice

1. Find the measure of \begin{align*}x\end{align*}x in the diagram:

2. Find the measure of the smallest angle in the triangle with side lengths 47, 54 and 72.

3. Find \begin{align*}m \angle B\end{align*}mB, if \begin{align*}a = 68, b = 56\end{align*}a=68,b=56 and \begin{align*}c = 25\end{align*}c=25.


1. \begin{align*}\cos^{-1} \left(\frac{14^2+8^2-19^2}{2(14)(8)} \right) \approx 117^\circ\end{align*}cos1(142+821922(14)(8))117

2. The smallest angle will be opposite the side with length 47, so this will be our \begin{align*}c\end{align*}c in the equation.

\begin{align*}\cos^{-1} \left(\frac{54^2+72^2-47^2}{2(54)(72)} \right) \approx 41^\circ\end{align*}cos1(542+7224722(54)(72))41

3. Rearrange the formula to solve for \begin{align*}m \angle B, \cos B=\left(\frac{a^2+c^2-b^2}{2(a)(c)} \right); \cos^{-1} \left(\frac{68^2+25^2-56^2}{2(68)(25)} \right) \approx 52^\circ\end{align*}mB,cosB=(a2+c2b22(a)(c));cos1(682+2525622(68)(25))52


Use the Law of Cosines to find the value of \begin{align*}x\end{align*}x, to the nearest degree, in problems 1 through 6.

  1. Find the measure of the smallest angle in the triangle with side lengths 150, 165 and 200 meters.
  2. Find the measure of the largest angle in the triangle with side length 59, 83 and 100 yards.
  3. Find the \begin{align*}m \angle C\end{align*}mC if \begin{align*}a = 6, b = 9\end{align*}a=6,b=9 and \begin{align*}c=13\end{align*}c=13.
  4. Find the \begin{align*}m \angle B\end{align*}mB if \begin{align*}a = 15, b = 8\end{align*}a=15,b=8 and \begin{align*}c = 9\end{align*}c=9.
  5. Find the \begin{align*}m \angle A\end{align*}mA if \begin{align*}a = 24, b = 20\end{align*}a=24,b=20 and \begin{align*}c = 14\end{align*}c=14.
  6. A triangular plot of land is bordered by a road, a fence and a creek. If the stretch along the road is 100 meters, the length of the fence is 115 meters and the side along the creek is 90 meters, at what angle do the fence and road meet?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Determination of Unknown Angles Using Law of Cosines.
Please wait...
Please wait...