You are working on creating a mobile for your art class. A mobile is a piece of art that has a rod with different shapes hanging from it, so they can spin.

To create your project, you need to cut a set of triangles that have a variety of sizes. You are about to start cutting triangles, when your friend, who is helping you with the project, comes over. She tells you that each piece needs to have a rod through the side of it to balance the shape in a certain way. She wants you to make a piece that looks like this:

You have already cut a triangle by cutting a piece out of construction paper. You know that one side of your triangle is 6 inches long, but you don't know the length of the other two sides. Can you use the information you have to find the length of

By the end of this Concept, you'll be able to solve this problem.

### Watch This

How do you find the height of a triangle if you know the area and the base

### Guidance

In this section, we will look at situations where we know the area but need to find another part of the triangle, as well as an application involving a quadrilateral. All of this will involve the use of the Law of Cosines, Law of Sines, and the Alternate Formula for the Area of a Triangle.

#### Example A

The jib sail on a sailboat came untied and the rope securing it was lost. If the area of the jib sail is 56.1 square feet, use the figure and information below to find the length of the rope.

**Solution:** Since we know the area, one of the sides, and one angle of the jib sail, we can use the formula

Now that we know side

The length of the rope is approximately 9.6 feet.

#### Example B

In quadrilateral

**Solution:** In order to find the perimeter of

Now that we know

Finally, we can calculate the perimeter since we have found all four sides of the quadrilateral.

#### Example C

In

**Solution:**

First, find

### Guided Practice

1. Find "h" in the triangle below: Area

2. Find

3. Find the area of

**Solutions:**

1. Since we know the area, one of the sides (18.15), and one angle of the triangle (

This gives a result of:

2. Since we know the area and the lengths of two of the sides of the triangle, we can use the formula

3. Area of \begin{align*}\triangle{ABC} = 83.0\end{align*}

### Concept Problem Solution

Since you know that the mobile piece is six inches on one side, and that the area of the triangle is \begin{align*}25 in^2\end{align*}, you can use the formula \begin{align*}K = \frac{1}{2}ab\sin C\end{align*} to find the length of the other side:

\begin{align*} K = \frac{1}{2}ab\sin C\\ 25 = \frac{1}{2}(6)(b) \sin 35^\circ\\ 25 = 1.72b\\ b = \frac{25}{1.72}\\ b = 14.53 in \end{align*}

### Explore More

- The area of the triangle below is \begin{align*}138 in^2\end{align*}. Solve for x, the height.
- The area of the triangle below is \begin{align*}250 cm^2\end{align*}. A height is given on the diagram. Solve for x.

Use the triangle below for questions 3-5. The area of the large triangle is \begin{align*}65 cm^2\end{align*}.

- Solve for x.
- Find the perimeter of the large triangle.
- Find the measure of all three angles of the large triangle.

Use the triangle below for questions 6-8. The area of the triangle is \begin{align*}244 cm^2\end{align*}.

- Solve for \begin{align*}\theta\end{align*}.
- Solve for x.
- Find the perimeter of the triangle.

Use the triangle below for questions 9-11. The area of the triangle is \begin{align*}299.8 in^2\end{align*}.

- Solve for x.
- Solve for y.
- Find the measure of the other two angles of the triangle.

Use the triangle below for questions 12-15. The area of the large triangle is \begin{align*}84 in^2\end{align*}.

- Solve for x.
- Solve for y.
- Solve for z.
- Solve for \begin{align*}\theta\end{align*}.