<meta http-equiv="refresh" content="1; url=/nojavascript/"> Finding Exact Trigonometric Values Using Sum and Difference Formulas ( Read ) | Trigonometry | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Finding Exact Trigonometric Values Using Sum and Difference Formulas

%
Progress
Practice Finding Exact Trigonometric Values Using Sum and Difference Formulas...
Practice
Progress
%
Practice Now
Finding Exact Trig Values using Sum and Difference Formulas

You measure an angle with your protractor to be 165^\circ . How could you find the exact sine of this angle without using a calculator?

Guidance

You know that \sin 30^\circ=\frac{1}{2}, \cos 135^\circ=-\frac{\sqrt{2}}{2}, \tan 300 ^\circ = -\sqrt{3}, etc... from the special right triangles. In this concept, we will learn how to find the exact values of the trig functions for angles other than these multiples of 30^\circ, 45^\circ, and 60^\circ . Using the Sum and Difference Formulas, we can find these exact trig values.

Sum and Difference Formulas

\sin(a\pm b) &=\sin a \cos b \pm \cos a \sin b \\\cos(a\pm b) &=\cos a \cos b \pm \sin a \sin b \\\tan(a \pm b) &=\frac{\tan a \pm \tan b}{1 \pm \tan a \tan b}

Example A

Find the exact value of \sin 75^\circ .

Solution: This is an example of where we can use the sine sum formula from above, \sin(a+b)=\sin a \cos b+\cos a \sin b , where a = 45^\circ and b = 30^\circ .

\sin 75^\circ &=\sin(45^\circ + 30 ^\circ) \\&= \sin 45^\circ \cos 30^\circ +\cos 45^\circ \sin 30 ^\circ \\&= \frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\cdot \frac{1}{2} \\&= \frac{\sqrt{6}+\sqrt{2}}{4}

In general, \sin (a+b)\ne \sin a+\sin b and similar statements can be made for the other sum and difference formulas.

Example B

Find the exact value of \cos \frac{11 \pi}{12} .

Solution: For this example, we could use either the sum or difference cosine formula, \frac{11\pi}{12}=\frac{2\pi}{3}+\frac{\pi}{4} or \frac{11\pi}{12}=\frac{7\pi}{6}-\frac{\pi}{4} . Let’s use the sum formula.

\cos \frac{11\pi}{12} &=\cos \left(\frac{2\pi}{3}+\frac{\pi}{4}\right) \\&=\cos \frac{2\pi}{3}\cos \frac{\pi}{4}-\sin\frac{2\pi}{3}\sin \frac{\pi}{4} \\&= -\frac{1}{2}\cdot \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\&= -\frac{\sqrt{2}+\sqrt{6}}{4}

Example C

Find the exact value of \tan \left(-\frac{\pi}{12}\right) .

Solution: This angle is the difference between \frac{\pi}{4} and \frac{\pi}{3} .

\tan \left(\frac{\pi}{4}-\frac{\pi}{3}\right) &=\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{3}}{1+\tan \frac{\pi}{4} \tan \frac{\pi}{3}} \\&=\frac{1-\sqrt{3}}{1+\sqrt{3}}

This angle is also the same as \frac{23 \pi}{12} . You could have also used this value and done \tan\left(\frac{\pi}{4}+\frac{5 \pi}{3}\right) and arrived at the same answer.

Concept Problem Revisit

We can use the sine sum formula, \sin(a+b)=\sin a \cos b+\cos a \sin b , where a = 120^\circ and b = 45^\circ .

\sin 165^\circ &=\sin(120^\circ + 45 ^\circ) \\&= \sin 120^\circ \cos 45^\circ +\cos 120^\circ \sin 45 ^\circ \\&= \frac{\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2}+\frac{-1}{2} \cdot \frac{\sqrt{2}}{2} \\&= \frac{\sqrt{6}-\sqrt{2}}{4}\\

Guided Practice

Find the exact values of:

1. \cos 15^\circ

2. \tan 255^\circ

Answers

1. \cos 15^\circ &=\cos(45^\circ - 30^\circ) \\&= \cos 45^\circ \cos 30^\circ - \sin 45 ^\circ \sin 30 ^\circ \\&= \frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\cdot \frac{1}{2} \\&= -\frac{\sqrt{6}-\sqrt{2}}{4}

2. \tan (210^\circ + 45^\circ) &=\frac{\tan 210^\circ+\tan 45^\circ}{1-\tan 210^\circ \tan 45^\circ} \\&= \frac{\frac{\sqrt{3}}{3}+1}{1-\frac{\sqrt{3}}{3}}=\frac{\frac{\sqrt{3}+3}{3}}{\frac{3-\sqrt{3}}{3}}=\frac{\sqrt{3}+3}{3-\sqrt{3}}

Vocabulary

Sum and Difference Formulas
\sin(a\pm b) &=\sin a \cos b \pm \cos a \sin b \\\cos (a \pm b) &=\cos a \cos b \mp \sin a \sin b \\\tan (a \pm b) &=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}

Practice

Find the exact value of the following trig functions.

  1. \sin 15^\circ
  2. \cos \frac{5\pi}{12}
  3. \tan 345^\circ
  4. \cos (-255^\circ)
  5. \sin \frac{13 \pi}{12}
  6. \sin \frac{17\pi}{12}
  7. \cos 15^\circ
  8. \tan (-15^\circ)
  9. \sin 345^\circ
  10. Now, use \sin 15^\circ from #1, and find \sin 345^\circ . Do you arrive at the same answer? Why or why not?
  11. Using \cos 15^\circ from #7, find \cos 165^\circ . What is another way you could find \cos 165^\circ ?
  12. Describe any patterns you see between the sine, cosine, and tangent of these “new” angles.
  13. Using your calculator, find the \sin 142^\circ . Now, use the sum formula and your calculator to find the \sin 142^\circ using 83^\circ and 59^\circ .
  14. Use the sine difference formula to find \sin 142^\circ with any two angles you choose. Do you arrive at the same answer? Why or why not?
  15. Challenge Using \sin (a+b)=\sin a \cos b +\cos a \sin b and \cos (a+b)=\cos a \cos b - \sin a \sin b , show that \tan (a+b)=\frac{\tan a + \tan b}{1-\tan a \tan b} .

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Finding Exact Trigonometric Values Using Sum and Difference Formulas.

Reviews

Please wait...
Please wait...

Original text