<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Fundamental Trigonometric Identities

Prove equations are true using Reciprocal, Tangent, and other identities.

Atoms Practice
Estimated11 minsto complete
Practice Fundamental Trigonometric Identities
This indicates how strong in your memory this concept is
Estimated11 minsto complete
Practice Now
Turn In
Basic Trigonometric Identities

The basic trigonometric identities are ones that can be logically deduced from the definitions and graphs of the six trigonometric functions.  Previously, some of these identities have been used in a casual way, but now they will be formalized and added to the toolbox of trigonometric identities. 

How can you use the trigonometric identities to simplify the following expression?


Trigonometric Identities

An identity is a mathematical sentence involving the symbol “=” that is always true for variables within the domains of the expressions on either side.

Reciprocal Identities

The reciprocal identities refer to the connections between the trigonometric functions like sine and cosecant.  Sine is opposite over hypotenuse and cosecant is hypotenuse over opposite.  This logic produces the following six identities.

  • sinθ=1cscθ
  • cosθ=1secθ
  • tanθ=1cotθ
  • cotθ=1tanθ
  • secθ=1cosθ
  • cscθ=1sinθ 

Quotient Identities

The quotient identities follow from the definition of sine, cosine and tangent.

  • tanθ=sinθcosθ
  • cotθ=cosθsinθ

Odd/Even Identities

The odd-even identities follow from the fact that only cosine and its reciprocal secant are even and the rest of the trigonometric functions are odd.

  • sin(θ)=sinθ
  • cos(θ)=cosθ
  • tan(θ)=tanθ
  • cot(θ)=cotθ
  • sec(θ)=secθ
  • csc(θ)=cscθ



Cofunction Identities

The cofunction identities make the connection between trigonometric functions and their “co” counterparts like sine and cosine.  Graphically, all of the cofunctions are reflections and horizontal shifts of each other.

  • cos(π2θ)=sinθ
  • sin(π2θ)=cosθ
  • tan(π2θ)=cotθ
  • cot(π2θ)=tanθ
  • sec(π2θ)=cscθ
  • csc(π2θ)=secθ




Example 1

Earlier, you were asked how you could simplify the trigonometric expression:


It can be simplified to be equivalent to negative tangent as shown below:


Example 2

If sinθ=0.87, find cos(θπ2).

While it is possible to use a calculator to find θ, using identities works very well too. 

First you should factor out the negative from the argument.  Next you should note that cosine is even and apply the odd-even identity to discard the negative in the argument.  Lastly recognize the cofunction identity.


Example 3

If cos(θπ2)=0.68 then determine csc(θ).

You need to show that  cos(θπ2)=cos(π2θ).


Then, csc(θ)=cscθ


Example 4

Use identities to prove the following: cot(β)cot(π2β)sin(β)=cos(βπ2).

When doing trigonometric proofs, it is vital that you start on one side and only work with that side until you derive what is on the other side.  Sometimes it may be helpful to work from both sides and find where the two sides meet, but this work is not considered a proof.  You will have to rewrite your steps so they follow from only one side.  In this case, work with the left side and keep rewriting it until you have cos(βπ2).


Example 5

Prove the following trigonometric identity by working with only one side.



1. Prove the quotient identity for cotangent using sine and cosine.

2. Explain why cos(π2θ)=sinθ using graphs and transformations.

3. Explain why secθ=1cosθ.

4. Prove that tanθcotθ=1.

5. Prove that sinθcscθ=1.

6. Prove that sinθsecθ=tanθ.

7. Prove that cosθcscθ=cotθ.

8. If sinθ=0.81, what is sin(θ)?

9. If cosθ=0.5, what is cos(θ)?

10. If cosθ=0.25, what is sec(θ)?

11. If \begin{align*}\csc \theta=0.7\end{align*}, what is \begin{align*}\sin (-\theta)\end{align*}?

12. How can you tell from a graph if a function is even or odd?

13. Prove \begin{align*}\frac{\tan x \cdot \sec x}{\csc x} \cdot \cot x =\tan x\end{align*}.

14. Prove \begin{align*}\frac{\sin^2 x \cdot \sec x}{\tan x} \cdot \csc x=1\end{align*}.

15. Prove \begin{align*}\cos x \cdot \tan x =\sin x\end{align*}.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.1. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More



Cofunctions are functions that are identical except for a reflection and horizontal shift. Examples include: sine and cosine, tangent and cotangent, secant and cosecant.


An even function is a function with a graph that is symmetric with respect to the y-axis and has the property that f(-x) = f(x).


An identity is a mathematical sentence involving the symbol “=” that is always true for variables within the domains of the expressions on either side.

Odd Function

An odd function is a function with the property that f(-x) = -f(x). Odd functions have rotational symmetry about the origin.


A proof is a series of true statements leading to the acceptance of truth of a more complex statement.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Fundamental Trigonometric Identities.
Please wait...
Please wait...