<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# General Sinusoidal Graphs

## Sine and cosine waves and their relationship to the unit circle.

Estimated8 minsto complete
%
Progress
Practice General Sinusoidal Graphs
Progress
Estimated8 minsto complete
%
The Sinusoidal Function Family

The cosine function is the x\begin{align*}x\end{align*} coordinates of the unit circle and the sine function is the y\begin{align*}y\end{align*} coordinates.  Since the unit circle has radius one and is centered at the origin, both sine and cosine oscillate between positive and negative one.

What happens when the circle is not centered at the origin and does not have a radius of 1?

#### Watch This

http://www.youtube.com/watch?v=nXx2PsgMjYA James Sousa: Graphing the Sine and Cosine Functions

http://www.youtube.com/watch?v=QNQAkUUHNxo James Sousa: Animation: Graphing the Sine Function Using the Unit Circle

http://www.youtube.com/watch?v=tcjZOGaeoeo James Sousa: Animation: Graphing the Cosine Function Using the Unit Circle

#### Guidance

Consider a Ferris wheel that spins evenly with a radius of 1 unit.  It starts at (1, 0) or an angle of 0 radians and spins counterclockwise at a rate of one cycle per 2π\begin{align*}2 \pi\end{align*} minutes (so you can use time is equal to radians).

The 16 points around the circle are chosen because they correspond to the key points of the unit circle.  Their heights (y\begin{align*}y\end{align*}-values) and widths (x\begin{align*}x\end{align*}-values) are already known and can be filled in.

First consider the height at each of the points as you travel around half of the circle from the starting location.  Keep track of your work in a table.

 Angle (radians) Height (units) 0 0 π6\begin{align*}\frac{\pi}{6}\end{align*} 12\begin{align*}\frac{1}{2}\end{align*} π4\begin{align*}\frac{\pi}{4}\end{align*} 2√2≈0.707\begin{align*}\frac{\sqrt{2}}{2} \approx 0.707\end{align*} π3\begin{align*}\frac{\pi}{3}\end{align*} 3√2≈0.866\begin{align*}\frac{\sqrt{3}}{2} \approx 0.866\end{align*} π2\begin{align*}\frac{\pi}{2}\end{align*} 1 2π3\begin{align*}\frac{2 \pi}{3}\end{align*} 3√2≈0.866\begin{align*}\frac{\sqrt{3}}{2} \approx 0.866\end{align*} 3π4\begin{align*}\frac{3 \pi}{4}\end{align*} 2√2≈0.707\begin{align*}\frac{\sqrt{2}}{2} \approx 0.707\end{align*} 5π6\begin{align*}\frac{5 \pi}{6}\end{align*} 12\begin{align*}\frac{1}{2}\end{align*} π\begin{align*}\pi\end{align*} 0

Notice the symmetry of the height around \begin{align*}\frac{\pi}{2}\end{align*} and see the rest of the table in the examples.  Once the table is finished, you can plot these points on a regular coordinate plane where the \begin{align*}x\end{align*} axis is the angle and the \begin{align*}y\end{align*} axis is the height.  This is the first part of the graph of the sine function.

You will see a complete cycle of the sine function in Example A.  In Example B, you will see how the \begin{align*}x\end{align*}-coordinates produce the plot of the cosine curve.

Example A

Finish the table for heights of the points in quadrants III and IV and draw an entire cycle (known as a period) of the sine function.

Solution:

 Angle (radians) Height (units) \begin{align*}\pi\end{align*} 0 \begin{align*}\frac{7 \pi}{6}\end{align*} \begin{align*}-\frac{1}{2}\end{align*} \begin{align*}\frac{5 \pi}{4}\end{align*} \begin{align*}-\frac{\sqrt{2}}{2} \approx -0.707\end{align*} \begin{align*}\frac{4 \pi}{3}\end{align*} \begin{align*}-\frac{\sqrt{3}}{2} \approx -0.866\end{align*} \begin{align*}\frac{3 \pi}{2}\end{align*} -1 \begin{align*}\frac{5 \pi}{3}\end{align*} \begin{align*}-\frac{\sqrt{3}}{2} \approx -0.866\end{align*} \begin{align*}\frac{7 \pi}{4}\end{align*} \begin{align*}-\frac{\sqrt{2}}{2} \approx -0.707\end{align*} \begin{align*}\frac{11 \pi}{6}\end{align*} \begin{align*}-\frac{1}{2}\end{align*} \begin{align*}2 \pi\end{align*} 0

Example B

Use your knowledge of the angles \begin{align*}0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\end{align*} on the unit circle to get a complete cycle of the cosine graph.

Solution:  The cosine function is the \begin{align*}x\end{align*}-coordinates of the unit circle and measures width.  By referring to a unit circle or your memory, you can fill out a much shorter table than before.

 Angle (radians) Width (units) 0 1 \begin{align*}\frac{\pi}{2}\end{align*} 0 \begin{align*}\pi\end{align*} -1 \begin{align*}\frac{3 \pi}{2}\end{align*} 0 \begin{align*}2 \pi\end{align*} 1

First plot these five points and then connect them with a smooth curve.  This will produce the cosine graph.

Determining these five main points is the key to graphing sine or cosine graphs even when the graph is shifted or stretched.

Example C

What happens on either side of the sine and cosine graphs? Can you explain why?

Solution:  The graphs of the sine (blue) and cosine (red) functions repeat forever in both directions.

If you think about the example with the Ferris wheel, the ride will keep on spinning and has been spinning forever.  This is why the same cycle of the graph repeats over and over.

Concept Problem Revisited

The unit circle produces the parent function sine and cosine graphs.  When the unit circle is shifted up or down, made wider or narrower, or spun faster or slower in either direction, then the graphs of the sine and cosine functions will be transformed using basic function transformation rules.

#### Vocabulary

The sinusoidal function family refers to either sine or cosine waves since they are the same except for a horizontal shift.  This function family is also called the periodic function family because the function repeats after a given period of time.

#### Guided Practice

1. How are the sine and cosine graphs the same and how are they different?

2. Where are two maximums and two minimums of the sine graph?

3. In the interval \begin{align*}[-2 \pi, 4 \pi)\end{align*} where does cosine have zeroes

1. The sine graph is the same as the cosine graph offset by \begin{align*}\frac{\pi}{2}\end{align*}.  Besides this shift, both curves are identical due to the perfect symmetry of circles.

2. One maximum of the sine graph occurs at \begin{align*}\left(\frac{\pi}{2}, 1\right)\end{align*}.  One minimum occurs at \begin{align*}\left(\frac{3 \pi}{2},-1\right)\end{align*}.  This is one cycle of the sine graph.  Since it completes a cycle every \begin{align*}2 \pi\end{align*}, when you add \begin{align*}2 \pi\end{align*} to an \begin{align*}x\end{align*}-coordinate you will be on the same point of the cycle giving you another maximum or minimum.

\begin{align*}\left(\frac{5 \pi}{2}, 1\right)\end{align*} is another maximum. \begin{align*}\left(\frac{7 \pi}{2}, -1\right)\end{align*} is another minimum.

3. Observe where the cosine curve has \begin{align*}x\end{align*}-coordinates equal to zero.  Note that \begin{align*}4 \pi\end{align*} is excluded from the interval.  The values are \begin{align*}-\frac{3 \pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}\end{align*}.

#### Practice

1. Sketch \begin{align*}p(x)=\sin x\end{align*} from memory.

2. Sketch \begin{align*}j(x)=\cos x\end{align*} from memory.

3. Where do the maximums of the cosine graph occur?

4. Where do the minimums of the cosine graph occur?

5. Find all the zeroes of the sine function on the interval \begin{align*}\left[-\pi, \frac{5 \pi}{2}\right]\end{align*}.

6. Find all the zeroes of the cosine function on the interval \begin{align*}\left(-\frac{\pi}{2}, \frac{7 \pi}{2}\right]\end{align*}.

7. Preview: Using your knowledge of function transformations and the cosine graph, predict what the graph of \begin{align*}f(x)=2 \cos x\end{align*} will look like.

8. Preview:  Using your knowledge of function transformations and the cosine graph, predict what the graph \begin{align*}g(x)=\cos x+2\end{align*} of will look like.

9. Preview:  Using your knowledge of function transformations and the cosine graph, predict what the graph of \begin{align*}h(x)=\cos (x- \pi)\end{align*} will look like.

10. Preview: Using your knowledge of function transformations and the cosine graph, predict what the graph of \begin{align*}k(x)=-\cos x\end{align*} will look like.

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 5.2.

### Vocabulary Language: English

cosine

cosine

The cosine of an angle in a right triangle is a value found by dividing the length of the side adjacent the given angle by the length of the hypotenuse.
sine

sine

The sine of an angle in a right triangle is a value found by dividing the length of the side opposite the given angle by the length of the hypotenuse.
sinusoidal function family

sinusoidal function family

The sinusoidal function family refers to either sine or cosine waves since they are the same except for a horizontal shift. This function family is also called the periodic function family because the function repeats after a given period of time.
Transformations

Transformations

Transformations are used to change the graph of a parent function into the graph of a more complex function.
unit circle

unit circle

The unit circle is a circle of radius one, centered at the origin.
Zeroes

Zeroes

The zeroes of a function $f(x)$ are the values of $x$ that cause $f(x)$ to be equal to zero.