<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Horizontal Translations or Phase Shifts

## Shift right or left along the x-axis.

Estimated7 minsto complete
%
Progress
Practice Horizontal Translations or Phase Shifts

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated7 minsto complete
%
Phase Shift of Sinusoidal Functions

A periodic function that does not start at the sinusoidal axis or at a maximum or a minimum has been shifted horizontally.  This horizontal movement invites different people to see different starting points since a sine wave does not have a beginning or an end.

What are five other ways of writing the function f(x)=2sinx\begin{align*}f(x)=2 \cdot \sin x\end{align*}?

### Phase Shift of Sinusoidal Functions

The general sinusoidal function is:

f(x)=±asin(b(x+c))+d\begin{align*}f(x)=\pm a \cdot \sin (b(x+c))+d\end{align*}

The constant c\begin{align*}c\end{align*} controls the phase shift. Phase shift is the horizontal shift left or right for periodic functions.  If c=π2\begin{align*}c=\frac{\pi}{2}\end{align*} then the sine wave is shifted left by π2\begin{align*}\frac{\pi}{2}\end{align*}.  If c=3\begin{align*}c=-3\end{align*} then the sine wave is shifted right by 3.  This is the opposite direction than you might expect, but it is consistent with the rules of transformations for all functions

To graph a function such as  f(x)=3cos(xπ2)+1\begin{align*}f(x)=3 \cdot \cos \left(x-\frac{\pi}{2}\right)+1\end{align*}, first find the start and end of one period. Then sketch only that portion of the sinusoidal axis. Finally, plot the 5 important points for a cosine graph while keeping the amplitude in mind. The graph is shown below:

Generally b\begin{align*}b\end{align*} is always written to be positive.  If you run into a situation where b\begin{align*}b\end{align*} is negative, use your knowledge of even and odd functions to rewrite the function.

cos(x)sin(x)=cos(x)=sin(x)\begin{align*}\cos (-x) &= \cos (x)\\ \sin (-x) &= -\sin (x)\end{align*}

### Examples

#### Example 1

Earlier, you were asked to write f(x)=2sinx\begin{align*}f(x)=2 \cdot \sin x\end{align*} in five different ways. The function f(x)=2sinx\begin{align*}f(x)=2 \cdot \sin x\end{align*} can be rewritten an infinite number of ways.

2sinx=2cos(x+π2)=2cos(xπ2)=2sin(xπ)=2sin(x8π)\begin{align*}2 \cdot \sin x=-2 \cdot \cos \left(x+\frac{\pi}{2}\right)=2 \cdot \cos \left(x-\frac{\pi}{2}\right)=-2 \cdot \sin (x- \pi)=2 \cdot \sin (x-8 \pi)\end{align*}

It all depends on where you choose start and whether you see a positive or negative sine or cosine graph.

#### Example 2

Given the following graph, identify equivalent sine and cosine algebraic models.

Either this is a sine function shifted right by π4\begin{align*}\frac{\pi}{4}\end{align*} or a cosine graph shifted left 5π4\begin{align*}\frac{5 \pi}{4}\end{align*}.

f(x)=sin(xπ4)=cos(x+5π4)\begin{align*}f(x)=\sin \left(x-\frac{\pi}{4}\right)=\cos \left(x+\frac{5 \pi}{4}\right)\end{align*}

#### Example 3

At t=5\begin{align*}t=5\end{align*} minutes William steps up 2 feet to sit at the lowest point of the Ferris wheel that has a diameter of 80 feet.  A full hour later he finally is let off the wheel after making only a single revolution.  During that hour he wondered how to model his height over time in a graph and equation.

Since the period is 60 which works extremely well with the 360\begin{align*}360^\circ\end{align*} in a circle, this problem will be shown in degrees.

 Time (minutes) Height (feet) 5 2 20 42 35 82 50 42 65 2

William chooses to see a negative cosine in the graph.  He identifies the amplitude to be 40 feet.  The vertical shift of the sinusoidal axis is 42 feet.  The horizontal shift is 5 minutes to the right.

The period is 60 (not 65) minutes which implies b=6\begin{align*}b=6\end{align*} when graphed in degrees.

60=360b\begin{align*}60=\frac{360}{b}\end{align*}

Thus one equation would be:

f(x)=40cos(6(x5))+42\begin{align*}f(x)=-40 \cdot \cos (6(x-5))+42\end{align*}

#### Example 4

Tide tables report the times and depths of low and high tides.  Here is part of tide report from Salem, Massachusetts dated September 19, 2006.

 10:15 AM 9 ft. High Tide 4:15 PM 1 ft. Low Tide 10:15 PM 9 ft. High Tide

Find an equation that predicts the height based on the time.  Choose when t=0\begin{align*}t=0\end{align*} carefully.

There are two logical places to set t=0\begin{align*}t=0\end{align*}.  The first is at midnight the night before and the second is at 10:15 AM.  The first option illustrates a phase shift that is the focus of this concept, but the second option produces a simpler equation.  Set t=0\begin{align*}t=0\end{align*} to be at midnight and choose units to be in minutes.

 Time (hours : minutes) Time (minutes) Tide (feet) 10:15 615 9 16:15 975 1 22:15 1335 9 615+9752=795\begin{align*}\frac{615+975}{2}=795\end{align*} 5 1335+9752=1155\begin{align*}\frac{1335+975}{2}=1155\end{align*} 5

These numbers seem to indicate a positive cosine curve.  The amplitude is four and the vertical shift is 5.  The horizontal shift is 615 and the period is 720.

720=2πbb=π360\begin{align*}720=\frac{2 \pi}{b} \rightarrow b=\frac{\pi}{360}\end{align*}

Thus one equation is:

f(x)=4cos(π360(x615))+5\begin{align*}f(x)=4 \cdot \cos \left(\frac{\pi}{360} (x-615)\right)+5\end{align*}

#### Example 5

Use the equation from Example 4 to find out when the tide will be at exactly 8 ft on September 19th\begin{align*}19^{th}\end{align*}

This problem gives you the y\begin{align*}y\end{align*} and asks you to find the x\begin{align*}x\end{align*}.  Later you will learn how to solve this algebraically, but for now use the power of the intersect button on your calculator to intersect the function with the line y=8\begin{align*}y=8\end{align*}.  Remember to find all the x\begin{align*}x\end{align*} values between 0 and 1440 to account for the entire 24 hours.

There are four times within the 24 hours when the height is exactly 8 feet.  You can convert these times to hours and minutes if you prefer.

t\begin{align*}t \approx \end{align*} 532.18 (8:52), 697.82 (11:34), 1252.18 (20 : 52), 1417.82 (23:38)

### Review

Graph each of the following functions.

1. f(x)=2cos(xπ2)1\begin{align*}f(x)=2 \cos \left(x-\frac{\pi}{2}\right)-1\end{align*}

2. g(x)=sin(xπ)+3\begin{align*}g(x)=-\sin (x-\pi)+3\end{align*}

3. h(x)=3cos(2(xπ))\begin{align*}h(x)=3 \cos (2 (x-\pi))\end{align*}

4. k(x)=2sin(2xπ)+1\begin{align*}k(x)=-2 \sin (2x -\pi)+1\end{align*}

5. j(x)=cos(x+π2)\begin{align*}j(x)=-\cos \left(x+\frac{\pi}{2}\right)\end{align*}

Give one possible sine equation for each of the graphs below.

6.

7.

8.

Give one possible cosine function for each of the graphs below.

9.

10.

11.

The temperature over a certain 24 hour period can be modeled with a sinusoidal function.  At 3:00, the temperature for the period reaches a low of 22F\begin{align*}22^\circ F\end{align*}.  At 15:00, the temperature for the period reaches a high of 40F\begin{align*}40^\circ F\end{align*}.

12. Find an equation that predicts the temperature based on the time in minutes.  Choose t=0\begin{align*}t=0\end{align*} to be midnight.

13. Use the equation from #12 to predict the temperature at 4:00 PM.

14. Use the equation from #12 to predict the temperature at 8:00 AM.

15. Use the equation from #12 to predict the time(s) it will be 32F\begin{align*}32^\circ F\end{align*}.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Amplitude The amplitude of a wave is one-half of the difference between the minimum and maximum values of the wave, it can be related to the radius of a circle.
Horizontal shift A horizontal shift is the result of adding a constant term to the function inside the parentheses. A positive term results in a shift to the left and a negative term in a shift to the right.
periodic function A periodic function is a function with a predictable repeating pattern. Sine waves and cosine waves are periodic functions.
sinusoidal axis The sinusoidal axis is the neutral horizontal line that lies between the crests and the troughs of the graph of a sine or cosine function.
sinusoidal function A sinusoidal function is a sine or cosine wave.
sinusoidal functions A sinusoidal function is a sine or cosine wave.