<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Identifying Sets of Pythagorean Triples

Integer triples that make right triangles.

Atoms Practice
Estimated7 minsto complete
Practice Identifying Sets of Pythagorean Triples
Estimated7 minsto complete
Practice Now
Turn In
Pythagorean Theorem

Isoceles Triangle: Is a triangle that has two sides that are equal length.

Scalene traingle: A triangle that has that all different sides 

Right triangle: A triangle that is made up of a right angle.

The Pythagorean Theorem is a mathematical relationship between the sides of a right triangle, given by \begin{align*}a^2 + b^2 = c^2\end{align*}, where \begin{align*}a\end{align*}\begin{align*}b\end{align*}, and \begin{align*}c\end{align*} are lengths of the triangle.

License: CC BY-NC 3.0


Lengths of Triangle Sides Using the Pythagorean Theorem:

To find the length of one side of a triangle, given the other two sides, use the formula a2+ b2= c2

Identifying Sets of Pythagorean Triples

Pythagorean Triple: a set of three integers that make up the three sides of a right triangle for which the Pythagorean Theorem holds true

Examples of Pythagorean Triples:

3, 4, 5

5, 12, 13

7, 24, 25

11, 60, 61

Using Pythagorean Theorem to Classify Triangles:

If a2 + b2= c2 then it is a right triangle. Knowing this, what can you infer if a2 + b > c2  or if a2 + b2 < c2 ?

Using Pythagorean Theorem to Determine Distance:

We can use the Pythagorean Theorem to derive the Distance Formula.

To find the distance between two points, (x1, y1), and (x2, y2), simply plug it into the following formula.

\begin{align*}\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} = d\end{align*}

Explore More

Sign in to explore more, including practice questions and solutions for Lengths of Triangle Sides Using the Pythagorean Theorem.
Please wait...
Please wait...