<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Due to system maintenance, CK-12 will be unavailable on Friday,8/19/2016 from 6:00p.m to 10:00p.m. PT.

Polar to Rectangular Conversions

Convert from polar to cartesian coordinates

Atoms Practice
Estimated7 minsto complete
%
Progress
Practice Polar to Rectangular Conversions
Practice
Progress
Estimated7 minsto complete
%
Practice Now
Turn In
Polar Graph Conversions

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Explain how to graph rectangular coordinates: _______________________________________________________________________

Explain how to graph  polar coordinates:

_______________________________________________________________________

Polar to Rectangular Conversion

We can use trigonometry to convert from polar coordinates to rectangular coordinates.

Complete the coordinate conversion equations:

x= _________________                y=_________________

r2=_________________                tanθ=_________________

.

Given the following polar coordinates, find the corresponding rectangular coordinates of the points:

  1. (3,π3)
  2. (2,3π2)
  3. (5,π4)

Write each polar equation in rectangular form:

  1. r=4cosθ
  2. r=10sinθ
  3. r=5cscθ

.

Click here for answers.

.

Rectangular to Polar Conversion

To convert from rectangular to polar coodinates, we use the Pythagorean Theorem and the Arctangent function.

Note: The Arctangent function only calculates angles in the first and fourth quadrants so π radians must be added to the value of θ for all points with rectangular coordinates in the second and third quadrants.

.

Write the following points, given in rectangular form, in polar form using radians where0θ2π .

Remember: There are many possible polar coordinates!

  1. (5,3)
  2. (-2,4)
  3. (-7,1)
Click here for answers.
.

For each equation, convert the rectangular equation to polar form.

Hint: Use the equations x=rcosθ and y=rsinθ.

  1. 2xy=6
  2. 3x+4y=2
  3. (x+2)2+y2=4
  4. (x+5)2+(y1)2=26
  5. x2+(y6)2=36
  6. x2+(y+2)2=4
Click here for answers.

Explore More

Sign in to explore more, including practice questions and solutions for Polar to Rectangular Conversions.
Please wait...
Please wait...