<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Polar to Rectangular Conversions

Convert from polar to cartesian coordinates

Atoms Practice
Estimated7 minsto complete
%
Progress
Practice Polar to Rectangular Conversions
Practice
Progress
Estimated7 minsto complete
%
Practice Now
Polar Graph Conversions

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Explain how to graph rectangular coordinates: _______________________________________________________________________

Explain how to graph  polar coordinates:

_______________________________________________________________________

Polar to Rectangular Conversion

We can use trigonometry to convert from polar coordinates to rectangular coordinates.

Complete the coordinate conversion equations:

\begin{align*}x =\end{align*} _________________                \begin{align*}y =\end{align*}_________________

\begin{align*}r^2 =\end{align*}_________________                \begin{align*}tan\theta =\end{align*}_________________

.

Given the following polar coordinates, find the corresponding rectangular coordinates of the points:

  1. \begin{align*}(3, \frac{\pi}{3})\end{align*}
  2. \begin{align*}(2, \frac{3\pi}{2})\end{align*}
  3. \begin{align*}(5, \frac{\pi}{4})\end{align*}

Write each polar equation in rectangular form:

  1. \begin{align*}r=4\cos \theta \end{align*}
  2. \begin{align*}r=10\sin \theta \end{align*}
  3. \begin{align*}r=5\csc \theta \end{align*}

.

Click here for answers.

.

Rectangular to Polar Conversion

To convert from rectangular to polar coodinates, we use the Pythagorean Theorem and the Arctangent function.

Note: The Arctangent function only calculates angles in the first and fourth quadrants so \begin{align*}\pi\end{align*} radians must be added to the value of \begin{align*}\theta\end{align*} for all points with rectangular coordinates in the second and third quadrants.

.

Write the following points, given in rectangular form, in polar form using radians where\begin{align*}0\leq \theta \leq 2\pi\end{align*} .

Remember: There are many possible polar coordinates!

  1. (5,3)
  2. (-2,4)
  3. (-7,1)
Click here for answers.
.

For each equation, convert the rectangular equation to polar form.

Hint: Use the equations \begin{align*}x = r \cos \theta\end{align*} and \begin{align*}y = r \sin \theta\end{align*}.

  1. \begin{align*}2x-y=6\end{align*}
  2. \begin{align*}3x+4y=2\end{align*}
  3. \begin{align*}(x+2)^2+y^2=4\end{align*}
  4. \begin{align*}(x+5)^2+(y-1)^2=26\end{align*}
  5. \begin{align*}x^2+(y-6)^2=36\end{align*}
  6. \begin{align*}x^2+(y+2)^2=4\end{align*}
Click here for answers.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Polar to Rectangular Conversions.
Please wait...
Please wait...