<meta http-equiv="refresh" content="1; url=/nojavascript/">
You are viewing an older version of this Concept. Go to the latest version.

# Proofs of Trigonometric Identities

## Convert to sine/cosine, use basic identities, and simplify sides of the equation.

0%
Progress
Practice Proofs of Trigonometric Identities
Progress
0%
Verifying a Trigonometric Identity

Verify that $\frac{\sin^2x}{\tan^2x}=1 - \sin^2x$ .

### Guidance

This concept continues where the previous one left off. Now that you are comfortable simplifying expressions, we will extend the idea to verifying entire identities. Here are a few helpful hints to verify an identity:

• Change everything into terms of sine and cosine.
• Use the identities when you can.
• Start with simplifying the left-hand side of the equation, then, once you get stuck, simplify the right-hand side. As long as the two sides end up with the same final expression, the identity is true.

#### Example A

Verify the identity $\frac{\cot^2x}{\csc x}=\csc x - \sin x$ .

Solution: Rather than have an equal sign between the two sides of the equation, we will draw a vertical line so that it is easier to see what we do to each side of the equation. Start with changing everything into sine and cosine.

$\begin{array}{c|c c} \frac{\cot^2x}{\csc x} & \csc x - \sin x \\\frac{\frac{\cos^2x}{\sin^2x}}{\frac{1}{\sin x}} & \frac{1}{\sin x}- \sin x \\\frac{\cos^2x}{\sin x}\end{array}$

Now, it looks like we are at an impasse with the left-hand side. Let’s combine the right-hand side by giving them same denominator.

$\begin{array}{|c} \frac{1}{\sin x}- \frac{\sin^2x}{\sin x} \\\frac{1- \sin^2x}{\sin x} \\\frac{\cos^2x}{\sin x}\end{array}$

The two sides reduce to the same expression, so we can conclude this is a valid identity. In the last step, we used the Pythagorean Identity, $\sin^2 \theta+\cos^2 \theta=1$ , and isolated the $\cos^2x=1- \sin^2x$ .

There are usually more than one way to verify a trig identity. When proving this identity in the first step, rather than changing the cotangent to $\frac{\cos^2x}{\sin^2x}$ , we could have also substituted the identity $\cot^2x=\csc^2x-1$ .

#### Example B

Verify the identity $\frac{\sin x}{1- \cos x}=\frac{1+ \cos x}{\sin x}$ .

Solution: Multiply the left-hand side of the equation by $\frac{1+ \cos x}{1+ \cos x}$ .

$\frac{\sin x}{1- \cos x}&= \frac{1+ \cos x}{\sin x} \\\frac{1+ \cos x}{1+ \cos x} \cdot \frac{\sin x}{1- \cos x}&= \\\frac{\sin \left(1+\cos x\right)}{1- \cos^2x}&= \\\frac{\sin \left(1+\cos x\right)}{\sin^2x}&= \\\frac{1+\cos x}{\sin x}&=$

The two sides are the same, so we are done.

#### Example C

Verify the identity $\sec(-x)=\sec x$ .

Solution: Change secant to cosine.

$\sec(-x)= \frac{1}{\cos \left(-x\right)}$

From the Negative Angle Identities, we know that $\cos (-x)=\cos x$ .

$&=\frac{1}{\cos x} \\&=\sec x$

Concept Problem Revisit Start by simplifying the lefthand side of the equation.

$\frac{\sin^2x}{\tan^2x}=\frac{\sin^2x}{\frac{\sin^2x}{\cos^2x}}\\=\cos^2x$ .

Now simplify the righthand side of the equation. By manipulating the Trigonometric Identity,

$\sin^2x + \cos^2x = 1$ , we get $\cos^2x = 1 - \sin^2x$ .

$\cos^2x =\cos^2x$ and the equation is verified.

### Guided Practice

Verify the following identities.

1. $\cos x \sec x=1$

2. $2- \sec^2x=1- \tan^2x$

3. $\frac{\cos \left(-x\right)}{1+ \sin \left(-x\right)}=\sec x+ \tan x$

#### Answers

1. Change secant to cosine.

$\cos x \sec x&=\cos \cdot \frac{1}{\cos x} \\&=1$

2. Use the identity $1+ \tan^2 \theta=\sec^2 \theta$ .

$2- \sec^2x&=2-(1+ \tan^2x) \\&=2-1- \tan^2x \\&=1- \tan^2x$

3. Here, start with the Negative Angle Identities and multiply the top and bottom by $\frac{1+ \sin x}{1+ \sin x}$ to make the denominator a monomial.

$\frac{\cos \left(-x\right)}{1+ \sin \left(-x\right)}&=\frac{\cos x}{1- \sin x} \cdot \frac{1+ \sin x}{1+ \sin x} \\&=\frac{\cos x \left(1+ \sin x \right)}{1- \sin^2x} \\&=\frac{\cos x \left(1+ \sin x\right)}{\cos^2x} \\&=\frac{1+ \sin x}{\cos x} \\&=\frac{1}{\cos x}+ \frac{\sin x}{\cos x} \\&=\sec x+ \tan x$

### Practice

Verify the following identities.

1. $\cot (-x)=- \cot x$
2. $\csc (-x)=- \csc x$
3. $\tan x \csc x \cos x=1$
4. $\sin x+ \cos x \cot x=\csc x$
5. $\csc \left(\frac{\pi}{2}-x\right)=\sec x$
6. $\tan \left(\frac{\pi}{2}-x\right)=\tan x$
7. $\frac{\csc x}{\sin x}- \frac{\cot x}{\tan x}=1$
8. $\frac{\tan^2x}{\tan^2x+1}=\sin^2x$
9. $(\sin x- \cos x)^2+(\sin x+ \cos x)^2=2$
10. $\sin x- \sin x \cos^2x= \sin^3x$
11. $\tan^2x+1+\tan x \sec x=\frac{1+ \sin x}{\cos^2x}$
12. $\cos^2x=\frac{\csc x \cos x}{\tan x+ \cot x}$
13. $\frac{1}{1- \sin x} - \frac{1}{1+ \sin x}=2 \tan x \sec x$
14. $\csc^4x- \cot^4x=\csc^2x+\cot^2x$
15. $(\sin x - \tan x)(\cos x- \cot x)=(\sin x-1)(\cos x-1)$

Please wait...
Please wait...