<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Secant, Cosecant, and Cotangent Functions

Secant, cosecant, cotangent values of common angles

Atoms Practice
Estimated8 minsto complete
%
Progress
Practice Secant, Cosecant, and Cotangent Functions
Practice
Progress
Estimated8 minsto complete
%
Practice Now
Turn In
Reciprocal Trigonometric Functions

A ladder propped up against a house forms an angle of \begin{align*}30^\circ\end{align*} with the ground. What is the secant of this angle?

Reciprocal Trigonometric Functions

Each of the trigonometric ratios has a reciprocal function associated with it as shown below.

The reciprocal of sine is cosecant: \begin{align*}\frac{1}{\sin \theta}=\csc \theta\end{align*}, so \begin{align*}\csc \theta=\frac{H}{O}\end{align*} (hypotenuse over opposite)

The reciprocal of cosine is secant: \begin{align*}\frac{1}{\cos \theta}=\sec \theta\end{align*}, so \begin{align*}\sec \theta=\frac{H}{A}\end{align*} (hypotenuse over adjacent)

The reciprocal of tangent is cotangent: \begin{align*}\frac{1}{\tan \theta}=\cot \theta\end{align*}, so \begin{align*}\cot \theta=\frac{A}{O}\end{align*} (adjacent over opposite)

Let's use a calculator to evaluate \begin{align*}\sec \frac{2 \pi}{5}\end{align*}.

First, be sure that your calculator is in radian mode. To check/change the mode, press the MODE button and make sure RADIAN is highlighted. If it is not, use the arrow keys to move the cursor to RADIANS and press enter to select RADIAN as the mode. Now we are ready to use the calculator to evaluate the reciprocal trig function. Since the calculator does not have a button for secant, however, we must utilize the reciprocal relationship between cosine and secant:

\begin{align*}\text{Since}\ \sec \theta=\frac{1}{\cos \theta}, \sec \frac{2 \pi}{5}=\frac{1}{\cos \frac{2 \pi}{5}}=3.2361.\end{align*}

Now, let's use a calculator to evaluate \begin{align*}\cot 100^\circ\end{align*}.

This time we will need to be in degree mode. After the mode has been changed we can use the reciprocal of cotangent, which is tangent, to evaluate as shown:

\begin{align*}\text{Since}\ \cot \theta=\frac{1}{\tan \theta}, \cot 100^\circ=\frac{1}{\tan 100^\circ} \approx -0.1763.\end{align*}

Finally, let's find the exact value of \begin{align*}\csc \frac{5 \pi}{3}\end{align*} without using a calculator and give our answer in exact form.

The reciprocal of cosecant is sine so we will first find \begin{align*}\sin \frac{5 \pi}{3}\end{align*} Using either the unit circle or the alternative method, we can determine that \begin{align*}\sin \frac{5 \pi}{3}\end{align*} is \begin{align*}-\frac{\sqrt{3}}{2}\end{align*} using a \begin{align*}60^\circ\end{align*} reference angle in the fourth quadrant. Now, find its reciprocal: \begin{align*}\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}\end{align*}.

      

 

Examples

Example 1

Earlier, you were asked to find the secant of the angle of the ladder propped up against the house.

The secant is the reciprocal of the cosine. So to find \begin{align*}\sec 30^\circ\end{align*}, use the cosine.

\begin{align*}\cos 30^\circ = \frac{\sqrt{3}}{2}\end{align*}.

Therefore, \begin{align*}\sec 30^\circ = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\end{align*}.

Use your calculator to evaluate the following reciprocal trigonometric functions.

Example 2

\begin{align*}\csc \frac{7 \pi}{8}\end{align*}

\begin{align*}\csc \frac{7 \pi}{8}=\frac{1}{\sin \frac{7 \pi}{8}}=2.6131\end{align*}

Example 3

\begin{align*}\cot 85^\circ\end{align*}

\begin{align*}\cot 85^\circ=\frac{1}{\tan 85^\circ}=0.0875\end{align*}

Evaluate the following without using a calculator. Give all answers in exact form.

Example 4

\begin{align*}\sec 225^\circ\end{align*}

\begin{align*}\sec 225^\circ\end{align*} is the reciprocal of \begin{align*}\cot 225^\circ\end{align*}, a \begin{align*}45^\circ\end{align*} reference angle in quadrant three where cosine is negative. Because \begin{align*}\cos 45^\circ=\frac{1}{\sqrt{2}}, \cos 225^\circ=-\frac{1}{\sqrt{2}}\end{align*}, and \begin{align*}\sec 225^\circ=-\sqrt{2}\end{align*}.

Example 5

\begin{align*}\csc \frac{5 \pi}{6}\end{align*}

\begin{align*}\csc \frac{5 \pi}{6}\end{align*} is the reciprocal of \begin{align*}\sin \frac{5 \pi}{6}\end{align*}, a \begin{align*}\frac{\pi}{6}\end{align*} or \begin{align*}30^\circ\end{align*} reference angle in the second quadrant where sine is positive. Because \begin{align*}\sin \frac{\pi}{6}=\frac{1}{2}, \sin \frac{5 \pi}{6}=\frac{1}{2},\end{align*} and \begin{align*}\csc \frac{5 \pi}{6}=2\end{align*}.

Review

Use your calculator to evaluate the reciprocal trigonometric functions. Round your answers to four decimal places.

  1. \begin{align*}\csc 95^\circ\end{align*}
  2. \begin{align*}\cot 278^\circ\end{align*}
  3. \begin{align*}\sec \frac{14 \pi}{5}\end{align*}
  4. \begin{align*}\cot(-245^\circ)\end{align*}
  5. \begin{align*}\sec \frac{6 \pi}{7}\end{align*}
  6. \begin{align*}\csc \frac{23 \pi}{13}\end{align*}
  7. \begin{align*}\cot 333^\circ\end{align*}
  8. \begin{align*}\csc \frac{9 \pi}{5}\end{align*}

Evaluate the following trigonometric functions without using a calculator. Give your answers exactly.

  1. \begin{align*}\sec \frac{5 \pi}{6}\end{align*}
  2. \begin{align*}\csc \left(-\frac{3 \pi}{2}\right)\end{align*}
  3. \begin{align*}\cot 225^\circ\end{align*}
  4. \begin{align*}\sec \frac{11 \pi}{3}\end{align*}
  5. \begin{align*}\csc \frac{7 \pi}{6}\end{align*}
  6. \begin{align*}\sec 270^\circ\end{align*}
  7. \begin{align*}\cot \frac{5 \pi}{3}\end{align*}
  8. \begin{align*}\csc 315^\circ\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 13.8. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Secant, Cosecant, and Cotangent Functions.
Please wait...
Please wait...