Skip Navigation

Simplifying Trigonometric Expressions with Double-Angle Identities

Simplify sine, cosine, and tangent of angles multiplied or divided by 2.

Atoms Practice
Estimated8 minsto complete
Practice Simplifying Trigonometric Expressions with Double-Angle Identities
This indicates how strong in your memory this concept is
Estimated8 minsto complete
Practice Now
Turn In
Simplifying Trig Expressions using Double and Half Angle Formulas

As Agent Trigonometry, you are given the following cryptic clue. How could you simplify this clue?

\begin{align*}\frac{\tan 2x}{\frac{tan x}{1 + \tan x}}\end{align*}

Simplifying Trigonometric Expressions

We can also use the double-angle and half-angle formulas to simplify trigonometric expressions.

Let's simplify \begin{align*}\frac{\cos 2x}{\sin x \cos x}\end{align*}.

Use \begin{align*}\cos 2a=\cos^2a-\sin^2a\end{align*} and then factor.

\begin{align*}\frac{\cos 2x}{\sin x \cos x}&=\frac{\cos^2x- \sin^2x}{\sin x+ \cos x} \\ &=\frac{\left(\cos x- \sin x\right) \cancel{\left(\cos x + \sin x\right)}}{\cancel{\sin x+ \cos x}} \\ &=\cos x- \sin x\end{align*}

Now, let's find the formula for \begin{align*}\sin 3x\end{align*}.

You will need to use the sum formula and the double-angle formula. \begin{align*}\sin 3x=\sin(2x+x)\end{align*}

\begin{align*}\sin 3x&=\sin (2x+x) \\ &=\sin 2x \cos x + \cos 2x \sin x \\ &=2 \sin x \cos x \cos x+ \sin x(2 \cos^2x-1) \\ &=2 \sin x \cos^2x+2 \sin x \cos^2 x- \sin x \\ &=4 \sin x \cos^2x- \sin x \\ &=\sin x(4 \cos^2x-1)\end{align*}

Finally, let's verify the identity \begin{align*}\cos x+2 \sin^2 \frac{x}{2}=1\end{align*}.

Simplify the left-hand side use the half-angle formula.

\begin{align*}& \cos x+2 \sin^2 \frac{x}{2} \\ & \cos x+2 \left(\sqrt{\frac{1- \cos x}{2}}\right)^2 \\ & \cos x+2 \cdot \frac{1- \cos x}{2} \\ & \cos x+1- \cos x \\ & 1\end{align*}


Example 1

Earlier, you were asked to simplify \begin{align*}\frac{\tan 2x}{\frac{tan x}{1 + \tan x}}\end{align*}.

Use \begin{align*}\tan 2a=\frac {2\tan a}{1 - \tan^2 a}\end{align*} and then factor.

\begin{align*}\frac{\tan 2x}{\frac{tan x}{1 + \tan x}}=\frac{2\tan x}{1-\tan^2 x}\cdot \frac{1 + \tan x}{tan x} \\ =\frac{2\tan x}{(1 + \tan x)(1 - \tan x)}\cdot \frac{1 + \tan x}{tan x} =\frac{2}{1-\tan x}\end{align*}

Example 2

Simplify \begin{align*}\frac{\sin 2x}{\sin x}\end{align*}.

\begin{align*}\frac{\sin 2x}{\sin x}=\frac{2 \sin x \cos x}{\sin x}=2 \cos x\end{align*}

Example 3

Verify \begin{align*}\cos x+2 \cos^2 \frac{x}{2}=1+ 2 \cos x\end{align*}.

\begin{align*}\cos x+2 \cos^2 \frac{x}{2}&=1+2 \cos x \\ \cos x+2 \sqrt{\frac{1+ \cos x}{2}}^2&= \\ \cos x+1 + \cos x&= \\ 1+2 \cos x&=\end{align*}


Simplify the following expressions.

  1. \begin{align*}\sqrt{2+2 \cos x} \left(\cos \frac{x}{2}\right)\end{align*}
  2. \begin{align*}\frac{\cos 2x}{\cos^2x}\end{align*}
  3. \begin{align*}\tan 2x(1+ \tan x)\end{align*}
  4. \begin{align*}\cos 2x- 3 \sin^2x\end{align*}
  5. \begin{align*}\frac{1+\cos 2x}{\cot x}\end{align*}
  6. \begin{align*}(1+ \cos x)^2 \tan \frac{x}{2}\end{align*}

Verify the following identities.

  1. \begin{align*}\cot \frac{x}{2}=\frac{\sin x}{1- \cos x}\end{align*}
  2. \begin{align*}\frac{\sin x}{1+ \cos x}=\frac{1- \cos x}{\sin x}\end{align*}
  3. \begin{align*}\frac{\sin 2x}{1+ \cos 2x}= \tan x\end{align*}
  4. \begin{align*}(\sin x+ \cos x)^2=1+ \sin 2x\end{align*}
  5. \begin{align*}\sin x \tan \frac{x}{2}+2 \cos x=2 \cos^2 \frac{x}{2}\end{align*}
  6. \begin{align*}\cot x+ \tan x=2 \csc 2x\end{align*}
  7. \begin{align*}\cos 3x=4 \cos^3x-3 \cos x\end{align*}
  8. \begin{align*}\cos 3x=\cos^3x-3 \sin^2x \cos x\end{align*}
  9. \begin{align*}\sin 2x-\tan x=\tan x \cos 2x\end{align*}
  10. \begin{align*}\cos^4x-\sin^4x=\cos 2x\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 14.16.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Simplifying Trigonometric Expressions with Double-Angle Identities.
Please wait...
Please wait...