<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Simplifying Trigonometric Expressions with Double-Angle Identities

Simplify sine, cosine, and tangent of angles multiplied or divided by 2.

Atoms Practice
Practice Now
Simplifying Trig Expressions using Double and Half Angle Formulas

As Agent Trigonometry, you are given the following cryptic clue. How could you simplify this clue?

\frac{\tan  2x}{\frac{tan x}{1 + \tan x}}


We can also use the double-angle and half-angle formulas to simplify trigonometric expressions.

Example A

Simplify \frac{\cos 2x}{\sin x \cos x} .

Solution: Use \cos 2a=\cos^2a-\sin^2a and then factor.

\frac{\cos 2x}{\sin x \cos x}&=\frac{\cos^2x- \sin^2x}{\sin x+ \cos x} \\&=\frac{\left(\cos x- \sin x\right) \cancel{\left(\cos x + \sin x\right)}}{\cancel{\sin x+ \cos x}} \\&=\cos x- \sin x

Example B

Find the formula for \sin 3x .

Solution: You will need to use the sum formula and the double-angle formula. \sin 3x=\sin(2x+x)

\sin 3x&=\sin (2x+x) \\&=\sin 2x \cos x + \cos 2x \sin x \\&=2 \sin x \cos x \cos x+ \sin x(2 \cos^2x-1) \\&=2 \sin x \cos^2x+2 \sin x \cos^2 x- \sin x \\&=4 \sin x \cos^2x- \sin x \\&=\sin x(4 \cos^2x-1)

We will explore other possibilities for the \sin 3x because of the different formulas for \cos 2a in the Problem Set.

Example C

Verify the identity \cos x+2 \sin^2 \frac{x}{2}=1 .

Solution: Simplify the left-hand side use the half-angle formula.

& \cos x+2 \sin^2 \frac{x}{2} \\& \cos x+2 \left(\sqrt{\frac{1- \cos x}{2}}\right)^2 \\& \cos x+2 \cdot \frac{1- \cos x}{2} \\& \cos x+1- \cos x \\& 1

Concept Problem Revisit

Use \tan 2a=\frac {2\tan a}{1 - \tan^2 a} and then factor.

\frac{\tan  2x}{\frac{tan x}{1 + \tan x}}=\frac{2\tan x}{1-\tan^2 x}\cdot \frac{1 + \tan x}{tan x} \\=\frac{2\tan x}{(1 + \tan x)(1 - \tan x)}\cdot \frac{1 + \tan x}{tan x} =\frac{2}{1-\tan x}

Guided Practice

1. Simplify \frac{\sin 2x}{\sin x} .

2. Verify \cos x+2 \cos^2 \frac{x}{2}=1+ 2 \cos x .


1. \frac{\sin 2x}{\sin x}=\frac{2 \sin x \cos x}{\sin x}=2 \cos x

2. \cos x+2 \cos^2 \frac{x}{2}&=1+2 \cos x \\\cos x+2 \sqrt{\frac{1+ \cos x}{2}}^2&= \\\cos x+1 + \cos x&= \\1+2 \cos x&=


Simplify the following expressions.

  1. \sqrt{2+2 \cos x} \left(\cos \frac{x}{2}\right)
  2. \frac{\cos 2x}{\cos^2x}
  3. \tan 2x(1+ \tan x)
  4. \cos 2x- 3 \sin^2x
  5. \frac{1+\cos 2x}{\cot x}
  6. (1+ \cos x)^2 \tan \frac{x}{2}

Verify the following identities.

  1. \cot \frac{x}{2}=\frac{\sin x}{1- \cos x}
  2. \frac{\sin x}{1+ \cos x}=\frac{1- \cos x}{\sin x}
  3. \frac{\sin 2x}{1+ \cos 2x}= \tan x
  4. (\sin x+ \cos x)^2=1+ \sin 2x
  5. \sin x \tan \frac{x}{2}+2 \cos x=2 \cos^2 \frac{x}{2}
  6. \cot x+ \tan x=2 \csc 2x
  7. \cos 3x=4 \cos^3x-3 \cos x
  8. \cos 3x=\cos^3x-3 \sin^2x \cos x
  9. \sin 2x-\tan x=\tan x \cos 2x
  10. \cos^4x-\sin^4x=\cos 2x

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Simplifying Trigonometric Expressions with Double-Angle Identities.


Please wait...
Please wait...

Original text