<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Sine, Cosine, and Tangent Functions

## Trigonometric ratios based on sides of right triangles in relation to an angle.

Estimated11 minsto complete
%
Progress
Practice Sine, Cosine, and Tangent Functions

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated11 minsto complete
%
Sine, Cosine, Tangent

### Sine, Cosine, and Tangent

Trigonometry is the study of the relationships between the sides and angles of right triangles. The legs are called adjacent or opposite depending on which acute angle is being used.

a is adjacent to B a is opposite Ab is adjacent to A b is opposite Bc is the hypotenuse\begin{align*}& a \ \text{is} \ adjacent \ \text{to} \ \angle B \qquad \ a \ \text{is} \ opposite \ \angle A\\ & b \ \text{is} \ adjacent \ \text{to} \ \angle A \qquad \ b \ \text{is} \ opposite \ \angle B\\ & c \ \text{is the} \ hypotenuse\end{align*}

The three basic trigonometric ratios are called sine, cosine and tangent. For right triangle ABC\begin{align*}\triangle ABC\end{align*}, we have:

Sine Ratio: opposite leghypotenuse sinA=ac\begin{align*}\frac{opposite \ leg }{hypotenuse} \ \sin A = \frac{a}{c}\end{align*} or sinB=bc\begin{align*}\sin B = \frac{b}{c}\end{align*}

Cosine Ratio: adjacent leghypotenuse cosA=bc\begin{align*}\frac{adjacent \ leg}{hypotenuse} \ \cos A = \frac{b}{c}\end{align*} or cosB=ac\begin{align*}\cos B = \frac{a}{c}\end{align*}

Tangent Ratio: opposite legadjacent leg tanA=ab\begin{align*}\frac{opposite \ leg}{adjacent \ leg} \ \tan A = \frac{a}{b}\end{align*} or tanB=ba\begin{align*}\tan B = \frac{b}{a}\end{align*}

An easy way to remember ratios is to use SOH-CAH-TOA.

A few important points:

• Always reduce ratios (fractions) when you can.
• Use the Pythagorean Theorem to find the missing side (if there is one).
• If there is a radical in the denominator, rationalize the denominator.

What if you were given a right triangle and told that its sides measure 3, 4, and 5 inches? How could you find the sine, cosine, and tangent of one of the triangle's non-right angles?

### Examples

#### Example 1

Find the sine, cosine and tangent ratios of A\begin{align*}\angle A\end{align*}.

First, we need to use the Pythagorean Theorem to find the length of the hypotenuse.

52+12213sinAtanA=c2=c=leg opposite Ahypotenuse=1213=leg opposite Aleg adjacent to A=125cosA=leg adjacent to Ahypotenuse=513,\begin{align*}5^2 + 12^2 &= c^2\\ 13 &= c\\ \sin A &= \frac{leg \ opposite \ \angle A}{hypotenuse} = \frac{12}{13} && \cos A = \frac{leg \ adjacent \ to \ \angle A}{hypotenuse}= \frac{5}{13},\\ \tan A &= \frac{leg \ opposite \ \angle A}{leg \ adjacent \ to \ \angle A}= \frac{12}{5}\end{align*}

#### Example 2

Find the sine, cosine, and tangent of B\begin{align*}\angle B\end{align*}.

Find the length of the missing side.

AC2+52AC2ACsinB=152=200=102=10215=223cosB=515=13tanB=1025=22\begin{align*}AC^2 + 5^2 &= 15^2\\ AC^2 &= 200\\ AC &= 10 \sqrt{2}\\ \sin B &= \frac{10 \sqrt{2}}{15} = \frac{2 \sqrt{2}}{3} && \cos B = \frac{5}{15}=\frac{1}{3} && \tan B = \frac{10 \sqrt{2}}{5} = 2 \sqrt{2}\end{align*}

#### Example 3

Find the sine, cosine and tangent of 30\begin{align*}30^\circ\end{align*}.

This is a 30-60-90 triangle. The short leg is 6, y=63\begin{align*}y = 6 \sqrt{3}\end{align*} and x=12\begin{align*}x=12\end{align*}.

sin30=612=12cos30=6312=32tan30=663=1333=33\begin{align*}\sin 30^\circ = \frac{6}{12} = \frac{1}{2} && \cos 30^\circ = \frac{6 \sqrt{3}}{12} = \frac{\sqrt{3}}{2} && \tan 30^\circ = \frac{6}{6 \sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}\end{align*}

#### Example 4

What is sinA\begin{align*}\sin A\end{align*}cosA\begin{align*}\cos A\end{align*}, and tanA\begin{align*}\tan A\end{align*}?

sinA=1620=45\begin{align*}\sin A=\frac{16}{20}=\frac{4}{5}\end{align*}

cosA=1220=35\begin{align*} \cos A=\frac{12}{20}=\frac{3}{5}\end{align*}

tanA=1612=43\begin{align*} \tan A=\frac{16}{12}=\frac{4}{3}\end{align*}

### Review

Use the diagram to fill in the blanks below.

1. tanD=??\begin{align*}\tan D = \frac{?}{?}\end{align*}
2. sinF=??\begin{align*}\sin F = \frac{?}{?}\end{align*}
3. tanF=??\begin{align*}\tan F = \frac{?}{?}\end{align*}
4. cosF=??\begin{align*}\cos F = \frac{?}{?}\end{align*}
5. sinD=??\begin{align*}\sin D = \frac{?}{?}\end{align*}
6. cosD=??\begin{align*}\cos D = \frac{?}{?}\end{align*}

From questions 1-6, we can conclude the following. Fill in the blanks.

1. cos=sinF\begin{align*}\cos \underline{\;\;\;\;\;\;\;} = \sin F\end{align*} and sin=cosF\begin{align*}\sin \underline{\;\;\;\;\;\;\;} = \cos F\end{align*}.
2. tanD\begin{align*}\tan D\end{align*} and tanF\begin{align*}\tan F\end{align*} are _________ of each other.

Find the sine, cosine and tangent of A\begin{align*}\angle A\end{align*}. Reduce all fractions and radicals.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Acute Angle An acute angle is an angle with a measure of less than 90 degrees.
Adjacent Angles Two angles are adjacent if they share a side and vertex. The word 'adjacent' means 'beside' or 'next-to'.
Hypotenuse The hypotenuse of a right triangle is the longest side of the right triangle. It is across from the right angle.
Legs of a Right Triangle The legs of a right triangle are the two shorter sides of the right triangle. Legs are adjacent to the right angle.
opposite The opposite of a number $x$ is $-x$. A number and its opposite always sum to zero.
Pythagorean Theorem The Pythagorean Theorem is a mathematical relationship between the sides of a right triangle, given by $a^2 + b^2 = c^2$, where $a$ and $b$ are legs of the triangle and $c$ is the hypotenuse of the triangle.
Radical The $\sqrt{}$, or square root, sign.
sine The sine of an angle in a right triangle is a value found by dividing the length of the side opposite the given angle by the length of the hypotenuse.
Trigonometric Ratios Ratios that help us to understand the relationships between sides and angles of right triangles.