<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Solving Equations with Double-Angle Identities

Solve sine, cosine, and tangent of angles multiplied or divided by 2.

Atoms Practice
Estimated6 minsto complete
Practice Solving Equations with Double-Angle Identities
This indicates how strong in your memory this concept is
Estimated6 minsto complete
Practice Now
Turn In
Solving Trig Equations using Double and Half Angle Formulas

Trig Riddle: I am an angle x such that \begin{align*}0\le x <2\pi\end{align*}. I satisfy the equation \begin{align*}\sin 2x - \sin x=0\end{align*}. What angle am I?

Solve Trigonometric Equations

We can use the half and double angle formulas to solve trigonometric equations.

Let's solve the following trigonometric equations.

  1. Solve \begin{align*}\tan 2x+\tan x=0\end{align*} when \begin{align*}0\le x <2\pi\end{align*}.

Change \begin{align*}\tan 2x\end{align*} and simplify.

\begin{align*}\tan 2x + \tan x &=0 \\ \frac{2\tan x}{1-\tan ^2 x}+\tan x &=0 \\ 2\tan x +\tan x(1-\tan ^2x) &=0 \quad \rightarrow \text{Multiply everything by} \ 1-\tan^2x \text{ to eliminate denominator.}\\ 2\tan x +\tan x -\tan ^3 x &=0 \\ 3\tan x - \tan ^3 x &=0 \\ \tan x(3-\tan^2 x) &=0\end{align*}

Set each factor equal to zero and solve.

\begin{align*}&\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad 3-\tan ^2x =0 \\ &\ \ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ -\tan ^2 x =-3 \\ &\tan x=0 \qquad \qquad \qquad and \qquad \qquad \ \tan^2 x=3 \\ & \qquad x=0 \ and \ \pi \ \qquad \qquad \qquad \quad \qquad \tan x =\pm \sqrt{3} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ x =\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\end{align*}

  1. Solve \begin{align*}2\cos \frac{x}{2}+1=0\end{align*} when \begin{align*}0\le x<2\pi\end{align*}.

In this case, you do not have to use the half-angle formula. Solve for \begin{align*}\frac{x}{2}\end{align*}.

\begin{align*}2\cos \frac{x}{2}+1 &=0 \\ 2\cos \frac{x}{2} &=-1 \\ \cos \frac{x}{2} &= -\frac{1}{2}\end{align*}

Now, let’s find \begin{align*}\cos a = -\frac{1}{2}\end{align*} and then solve for \begin{align*}x\end{align*} by dividing by 2.

\begin{align*}\frac{x}{2} &=\frac{2\pi}{3},\frac{4\pi}{3} \\ &=\frac{4\pi}{3}, \frac{8\pi}{3}\end{align*}

Now, the second solution is not in our range, so the only solution is \begin{align*}x=\frac{4\pi}{3}\end{align*}.

  1. Solve \begin{align*}4\sin x \cos x = \sqrt{3}\end{align*} for \begin{align*}0\le x < 2\pi\end{align*}.

Pull a 2 out of the left-hand side and use the \begin{align*}\sin 2x\end{align*} formula.

\begin{align*}4\sin x \cos x &=\sqrt{3} \\ 2\cdot 2\sin x \cos x &=\sqrt{3} \\ 2 \cdot \sin 2x &=\sqrt{3} \\ \sin 2x &=\frac{\sqrt{3}}{2} \\ 2x &= \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3} \\ x &= \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\end{align*}


Example 1

Earlier, you were asked to find the angle x, where \begin{align*}0\le x <2\pi\end{align*}, such that x satisfies the equation \begin{align*}\sin 2x - \sin x=0\end{align*}.

Use the double angle formula and simplify.

\begin{align*}\sin 2x - \sin x = 0\\ 2\sin x \cos x - \sin x = 0\\ \sin x(2\cos x - 1)= 0\\ \sin x = 0 \text OR \cos x = \frac{1}{2}\end{align*}

Under the constraint \begin{align*}0\le x <2\pi\end{align*}, \begin{align*}\sin x = 0\end{align*} when \begin{align*}x=0\end{align*} or when \begin{align*}x=\pi\end{align*}. Under this same constraint, \begin{align*}\cos x = \frac{1}{2}\end{align*} when \begin{align*}x=\frac{\pi}{3}\end{align*} or when \begin{align*}x=\frac{5\pi}{3}\end{align*}.

Example 2

Solve the following equation for \begin{align*}0\le x <2\pi\end{align*}.

\begin{align*}\sin \frac{x}{2}=-1\end{align*}

\begin{align*}\sin \frac{x}{2} &=-1 \\ \frac{x}{2} &=\frac{3\pi}{2} \\ x &=3\pi\end{align*}

From this we can see that there are no solutions within our interval.

Example 3

Solve the following equation for \begin{align*}0\le x <2\pi\end{align*}.

\begin{align*}\cos 2x-\cos x=0\end{align*}

\begin{align*}\cos 2x - \cos x &=0 \\ 2\cos ^2x-\cos x -1 &=0 \\ (2\cos x -1)(\cos x +1) &=0\end{align*}

Set each factor equal to zero and solve.

\begin{align*}2\cos x-1 &=0 \\ 2\cos x &=1 \qquad \qquad \qquad \qquad\cos x +1=0\\ \cos x &=\frac{1}{2} \qquad \qquad and \qquad \qquad \cos x =-1\\ x &=\frac{\pi}{3}, \frac{5\pi}{3} \qquad \qquad \qquad \qquad \quad \ x=\pi \\ \end{align*}


Solve the following equations for \begin{align*}0\le x < 2\pi\end{align*}.

  1. \begin{align*}\cos x -\cos \frac{1}{2}x=0\end{align*}
  2. \begin{align*}\sin 2x \cos x=\sin x\end{align*}
  3. \begin{align*}\cos 3x - \cos ^3x=3\sin ^2x\cos x\end{align*}
  4. \begin{align*}\tan 2x - \tan x =0\end{align*}
  5. \begin{align*}\cos 2x -\cos x =0\end{align*}
  6. \begin{align*}2\cos ^2\frac{x}{2}=1\end{align*}
  7. \begin{align*}\tan \frac{x}{2}=4\end{align*}
  8. \begin{align*}\cos \frac{x}{2}=1+\cos x\end{align*}
  9. \begin{align*}\sin 2x +\sin x=0\end{align*}
  10. \begin{align*}\cos ^2x-\cos 2x =0\end{align*}
  11. \begin{align*}\frac{\cos 2x}{\cos ^2x}=1\end{align*}
  12. \begin{align*}\cos 2x-1=\sin^2x\end{align*}
  13. \begin{align*}\cos 2x =\cos x\end{align*}
  14. \begin{align*}\sin 2x-\cos 2x =1\end{align*}
  15. \begin{align*}\sin^2x-2=\cos 2x\end{align*}
  16. \begin{align*}\cot x+\tan x=2\csc 2x\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 14.17. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Solving Equations with Double-Angle Identities.
Please wait...
Please wait...