<meta http-equiv="refresh" content="1; url=/nojavascript/">
Dismiss
Skip Navigation

Solving Trigonometric Equations using Sum and Difference Formulas

Solve sine, cosine, and tangent of angles that are added or subtracted.

%
Progress
Practice
Progress
%
Practice Now
Solving Trig Equations using Sum and Difference Formulas

As Agent Trigonometry, you are now given another piece of the puzzle: \begin{align*}\sin(\frac{\pi}{2} - x) = -1\end{align*} . What is the value of @$\begin{align*}x\end{align*}@$ ?

Guidance

Lastly, we can use the sum and difference formulas to solve trigonometric equations. For this concept, we will only find solutions in the interval @$\begin{align*}0\le x <2\pi\end{align*}@$ .

Example A

Solve @$\begin{align*}\cos (x-\pi)=\frac{\sqrt{2}}{2}\end{align*}@$ .

Solution: Use the formula to simplify the left-hand side and then solve for @$\begin{align*}x\end{align*}@$ .

@$$\begin{align*}\cos (x-\pi) &=\frac{\sqrt{2}}{2} \\ \cos x \cos \pi +\sin x \sin \pi &=\frac{\sqrt{2}}{2} \\ -\cos x &=\frac{\sqrt{2}}{2}\\ \cos x &=-\frac{\sqrt{2}}{2}\end{align*}@$$

The cosine negative in the @$\begin{align*}2^{nd}\end{align*}@$ and @$\begin{align*}3^{rd}\end{align*}@$ quadrants. @$\begin{align*}x=\frac{3\pi}{4}\end{align*}@$ and @$\begin{align*}\frac{5\pi}{4}\end{align*}@$ .

Example B

Solve @$\begin{align*}\sin \left(x+\frac{\pi}{4}\right)+1=\sin \left(\frac{\pi}{4}-x\right)\end{align*}@$ .

Solution:

@$$\begin{align*}\sin \left(x+\frac{\pi}{4}\right)+1 &=\sin \left(\frac{\pi}{4}-x\right) \\ \sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}+1 &=\sin \frac{\pi}{4}\cos x -\cos \frac{\pi}{4}\sin x \\ \sin x \cdot \frac{\sqrt{2}}{2}+\cos x \cdot \frac{\sqrt{2}}{2}+1 &=\frac{\sqrt{2}}{2}.\cos x -\frac{\sqrt{2}}{2} \cdot \sin x \\ \sqrt{2} \sin x &=-1 \\ \sin x &=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}\end{align*}@$$

In the interval, @$\begin{align*}x=\frac{5\pi}{4}\end{align*}@$ and @$\begin{align*}\frac{7\pi}{4}\end{align*}@$ .

Example C

Solve @$\begin{align*}2\sin \left(x+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}\end{align*}@$ .

Solution:

@$$\begin{align*}2\sin\left(x+\frac{\pi}{3}\right) &=\tan \frac{\pi}{3} \\ 2\left(\sin x \cos \frac{\pi}{3}+\cos x \sin \frac{\pi}{3}\right) &=\sqrt{3} \\ 2\sin x \cdot \frac{1}{2}+2\cos x \cdot \frac{\sqrt{3}}{2} &=\sqrt{3} \\ \sin x +\sqrt{3}\cos x &=\sqrt {3} \\ \sin x &=\sqrt{3}(1-\cos x) \\ \sin ^2x &=3(1-2\cos x+\cos ^2x) \qquad \text{square both sides} \\ 1-\cos ^2x &=3-6\cos x + 3\cos ^2 x \qquad \ \ \text{substitute} \ \sin ^2{x} = 1-\cos ^2x \\ 0 &=4\cos^2x-6\cos x +2 \\ 0 &=2\cos^2x-3\cos x +1\end{align*}@$$

At this point, we can factor the equation to be @$\begin{align*}(2\cos x -1)(\cos x -1)=0\end{align*}@$ . @$\begin{align*}\cos x =\frac{1}{2}\end{align*}@$ , and 1, so @$\begin{align*}x=0, \frac{\pi}{3}, \frac{5 \pi}{3}\end{align*}@$ . Be careful with these answers. When we check these solutions it turns out that @$\begin{align*}\frac{5\pi}{3}\end{align*}@$ does not work.

@$$\begin{align*}2\sin\left(\frac{5\pi}{3}+\frac{\pi}{3}\right) &=\tan \frac{\pi}{3} \\ 2\sin 2\pi &=\sqrt{3} \\ 0 &\ne \sqrt{3}\end{align*}@$$

Therefore, @$\begin{align*}\frac{5\pi}{3}\end{align*}@$ is an extraneous solution.

Concept Problem Revisit

In the previous lesson you solved the expression @$\begin{align*}\sin(\frac{\pi}{2} - x)\end{align*}@$ as:

@$$\begin{align*}\sin(\frac{\pi}{2} - x)=\sin \frac{\pi}{2} \cos x - \cos \frac{\pi}{2} \sin x \\ &=1\cdot \cos x - 0\cdot \sin x \\ &=cos x\end{align*}@$$

So what you're now looking for is the value of @$\begin{align*}x\end{align*}@$ where @$\begin{align*}\cos x = -1\end{align*}@$ .

The cosine of @$\begin{align*}180^\circ\end{align*}@$ is equal to @$\begin{align*}-1\end{align*}@$ .

Guided Practice

Solve the following equations in the interval @$\begin{align*}0\le x<2\pi\end{align*}@$ .

1. @$\begin{align*}\cos(2\pi - x)=\frac{1}{2}\end{align*}@$

2. @$\begin{align*}\sin \left(\frac{\pi}{6}-x\right)+1 = \sin \left(x+\frac{\pi}{6}\right)\end{align*}@$

3. @$\begin{align*}\cos \left(\frac{\pi}{2}+x\right)=\tan \frac{\pi}{4}\end{align*}@$

Answers

1. @$$\begin{align*}\cos (2\pi-x) &=\frac{1}{2} \\ \cos 2\pi \cos x +\sin 2 \pi \sin x &=\frac{1}{2} \\ \cos x &=\frac{1}{2} \\ x &=\frac{\pi}{3} \ and \ \frac{5\pi}{3}\end{align*}@$$

2. @$$\begin{align*}\sin \left(\frac{\pi}{6}-x\right)+1 &=\sin \left(x+\frac{\pi}{6}\right)\\ \sin \frac{\pi}{6}\cos x-\cos \frac{\pi}{6}\sin x +1 &=\sin x \cos \frac{\pi}{6}+\cos x \sin \frac{\pi}{6} \\ \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x+1 &=\frac{\sqrt{3}}{2}\sin x +\frac{1}{2} \cos x \\ 1 &=\sqrt{3}\sin x \\ \frac{1}{\sqrt{3}} &=\sin x \\ x &=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)=0.6155 \ and \ 2.5261 \ \text{rad}\end{align*}@$$

3. @$$\begin{align*}\cos \left(\frac{\pi}{2}+x\right) &=\tan \frac{\pi}{4} \\ \cos \frac{\pi}{2} \cos x - \sin \frac{\pi}{2} \sin x &=1 \\ -\sin x &=1 \\ \sin x &=-1 \\ x &=\frac{3\pi}{2}\end{align*}@$$

Explore More

Solve the following trig equations in the interval @$\begin{align*}0\le x < 2\pi\end{align*}@$ .

  1. @$\begin{align*}\sin (x-\pi)=-\frac{\sqrt{2}}{2}\end{align*}@$
  2. @$\begin{align*}\cos(2\pi +x)=-1\end{align*}@$
  3. @$\begin{align*}\tan \left(x+\frac{\pi}{4}\right)=1\end{align*}@$
  4. @$\begin{align*}\sin \left(\frac{\pi}{2}-x\right)=\frac{1}{2}\end{align*}@$
  5. @$\begin{align*}\sin \left(x+\frac{3\pi}{4}\right)+\sin \left(x-\frac{3\pi}{4}\right)=1\end{align*}@$
  6. @$\begin{align*}\sin \left(x+\frac{\pi}{6}\right)=-\sin \left(x-\frac{\pi}{6}\right)\end{align*}@$
  7. @$\begin{align*}\cos \left(x+\frac{\pi}{6}\right)=\cos \left(x-\frac{\pi}{6}\right)+1\end{align*}@$
  8. @$\begin{align*}\cos \left(x+\frac{\pi}{3}\right)+\cos \left(x-\frac{\pi}{3}\right)=1\end{align*}@$
  9. @$\begin{align*}\tan(x+\pi)+2\sin (x+\pi)=0\end{align*}@$
  10. @$\begin{align*}\tan (x+\pi)+\cos \left(x+\frac{\pi}{2}\right)=0\end{align*}@$
  11. @$\begin{align*}\tan \left(x+\frac{\pi}{4}\right)=\tan \left(x-\frac{\pi}{4}\right)\end{align*}@$
  12. @$\begin{align*}\sin \left(x-\frac{5\pi}{3}\right)-\sin \left(x-\frac{2\pi}{3}\right)=0\end{align*}@$
  13. @$\begin{align*}4\sin (x+\pi)-2=2\cos\left(x+\frac{\pi}{2}\right)\end{align*}@$
  14. @$\begin{align*}1+2\cos(x-\pi)+\cos x =0\end{align*}@$
  15. Real Life Application The height, @$\begin{align*}h\end{align*}@$ (in feet), of two people in different seats on a Ferris wheel can be modeled by @$\begin{align*}h_1=50\cos 3t+46\end{align*}@$ and @$\begin{align*}h_2=50\cos 3\left(t-\frac{3\pi}{4}\right)+46\end{align*}@$ where @$\begin{align*}t\end{align*}@$ is the time (in minutes). When are the two people at the same height?

Image Attributions

Reviews

Please wait...
Please wait...

Original text