<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Tangent Graphs

Adjust the length of the curve, or the distance before the y values repeat, from 2pi.

Atoms Practice
Estimated8 minsto complete
%
Progress
Practice Tangent Graphs
Practice
Progress
Estimated8 minsto complete
%
Practice Now
Changes in the Period of a Sine and Cosine Function

What is the period of the cosine function \begin{align*}y=\cos [\pi (2x + 4)]\end{align*}y=cos[π(2x+4)]?

Period

The last thing that we can manipulate on the sine and cosine curve is the period.

The normal period of a sine or cosine curve is \begin{align*}2 \pi\end{align*}2π. To stretch out the curve, then the period would have to be longer than \begin{align*}2 \pi\end{align*}2π. Below we have sine curves with a period of \begin{align*}4 \pi\end{align*}4π and then the second has a period of \begin{align*}\pi\end{align*}π.

To determine the period from an equation, we introduce \begin{align*}b\end{align*}b into the general equation. So, the equations are \begin{align*}y=a\sin b(x-h)+k\end{align*}y=asinb(xh)+k and \begin{align*}y=a\cos b(x-h)+k\end{align*}y=acosb(xh)+k, where \begin{align*}a\end{align*}a is the amplitude, \begin{align*}b\end{align*}b is the frequency, \begin{align*}h\end{align*}h is the phase shift, and \begin{align*}k\end{align*}k is the vertical shift. The frequency is the number of times the sine or cosine curve repeats within \begin{align*}2 \pi\end{align*}2π. Therefore, the frequency and the period are indirectly related. For the first sine curve, there is half of a sine curve in \begin{align*}2 \pi\end{align*}2π. Therefore the equation would be \begin{align*}y=\sin \frac{1}{2}x\end{align*}y=sin12x. The second sine curve has two curves within \begin{align*}2 \pi\end{align*}2π, making the equation \begin{align*}y=\sin 2x\end{align*}y=sin2x. To find the period of any sine or cosine function, use \begin{align*}\frac{2 \pi}{|b|}\end{align*}, where \begin{align*}b\end{align*} is the frequency. Using the first graph above, this is a valid formula: \begin{align*}\frac{2 \pi}{\frac{1}{2}}=2 \pi \cdot 2=4 \pi\end{align*}.

Determine the period of the following sine and cosine functions.

\begin{align*}y=-3 \cos 6x\end{align*}

The 6 in the equation tells us that there are 6 repetitions within \begin{align*}2 \pi\end{align*}. So, the period is \begin{align*}\frac{2 \pi}{6}=\frac{\pi}{3}\end{align*}.

\begin{align*}y=2 \sin \frac{1}{4}x\end{align*}

The \begin{align*}\frac{1}{4}\end{align*} in the equation tells us the frequency. The period is \begin{align*}\frac{2 \pi}{\frac{1}{4}}=2 \pi \cdot 4=8 \pi\end{align*}.

\begin{align*}y=\sin \pi x -7\end{align*}

The \begin{align*}\pi\end{align*} is the frequency. The period is \begin{align*}\frac{2 \pi}{\pi}=2\end{align*}.

Graph

Graph \begin{align*}y=-3 \cos 6x\end{align*}  from \begin{align*}[0, 2 \pi]\end{align*}. Determine where the maximum and minimum values occur. Then, state the domain and range.

The amplitude is -3, so it will be stretched and flipped. The period is \begin{align*}\frac{\pi}{3}\end{align*} (from above) and the curve should repeat itself 6 times from 0 to \begin{align*}2 \pi\end{align*}. The first maximum value is 3 and occurs at half the period, or \begin{align*}x=\frac{\pi}{6}\end{align*} and then repeats at \begin{align*}x=\frac{\pi}{2}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \ldots\end{align*} Writing this as a formula we start at \begin{align*}\frac{\pi}{6}\end{align*} and add \begin{align*}\frac{\pi}{3}\end{align*} to get the next maximum, so each point would be \begin{align*}\left(\frac{\pi}{6} \pm \frac{\pi}{3}n,3\right)\end{align*} where \begin{align*}n\end{align*} is any integer.

The minimums occur at -3 and the \begin{align*}x\end{align*}-values are multiples of \begin{align*}\frac{\pi}{3}\end{align*}. The points would be \begin{align*}\left(\pm \frac{\pi}{3}n, -3\right)\end{align*}, again \begin{align*}n\end{align*} is any integer. The domain is all real numbers and the range is \begin{align*}y \in [-3,3]\end{align*}.

Find all the solutions from the function \begin{align*}y=2 \sin \frac{1}{4}x\end{align*}  from \begin{align*}[0, 2 \pi]\end{align*}.

Before this concept, the zeros didn’t change in the frequency because we hadn’t changed the period. Now that the period can be different, we can have a different number of zeros within \begin{align*}[0, 2\pi]\end{align*}. In this case, we will have 6 times the number of zeros that the parent function. To solve this function, set \begin{align*}y = 0\end{align*} and solve for \begin{align*}x\end{align*}.

\begin{align*}0 &=-3 \cos 6x \\ 0 &=\cos 6x\end{align*}

Now, use the inverse cosine function to determine when the cosine is zero. This occurs at the multiples of \begin{align*}\frac{\pi}{2}\end{align*}.

\begin{align*}6x=\cos^{-1}0=\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2},\frac{9\pi}{2}, \frac{11\pi}{2}, \frac{13\pi}{2}, \frac{15 \pi}{2}, \frac{17\pi}{2}, \frac{19\pi}{2}, \frac{21\pi}{2}, \frac{23\pi}{2}\end{align*}

We went much past \begin{align*}2 \pi\end{align*} because when we divide by 6, to get \begin{align*}x\end{align*} by itself, all of these answers are going to also be divided by 6 and smaller.

\begin{align*}x=\frac{\pi}{12}, \frac{\pi}{4}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{3\pi}{4}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{5\pi}{4}, \frac{17 \pi}{12}, \frac{19\pi}{12}, \frac{21\pi}{2}, \frac{23\pi}{12}\end{align*}

\begin{align*}\frac{23 \pi}{12}<2\pi\end{align*} so we have found all the zeros in the range.

Examples

Example 1

Earlier, you were asked what is the period of \begin{align*}y=\cos [\pi (2x + 4)]\end{align*}

First, we need to get the function in the form \begin{align*}y=a\cos b(x-h)+k\end{align*}. Therefore we need to factor out the 2.

\begin{align*}y=\cos [\pi (2x + 4)]\\ y = \cos [2\pi(x + 2)]\end{align*}

The \begin{align*}2\pi\end{align*} is the frequency. The period is therefore \begin{align*}\frac{2 \pi}{2\pi}=1\end{align*}.

Example 2

Determine the period of the function \begin{align*}y=\frac{2}{3}\cos\frac{3}{4}x\end{align*}.

The period is \begin{align*}\frac{2 \pi}{\frac{3}{4}}=2 \pi \cdot \frac{4}{3}=\frac{8 \pi}{3}\end{align*}.

Example 3

Find the zeros of the function from #1 from \begin{align*}[0, 2\pi]\end{align*}.

The zeros would be when \begin{align*}y\end{align*} is zero.

\begin{align*}0 &=\frac{2}{3} \cos \frac{3}{4}x \\ 0 &=\cos \frac{3}{4}x \\ \frac{3}{4}x &=\cos^{-1}0=\frac{\pi}{2},\frac{3 \pi}{2} \\ x &=\frac{4}{3}\left(\frac{\pi}{2},\frac{3 \pi}{2}\right) \\ x &=\frac{2\pi}{3},2\pi\end{align*}

Example 4

Determine the equation of the sine function with an amplitude of -3 and a period of \begin{align*}8\pi\end{align*}.

The general equation of a sine curve is \begin{align*}y=a\sin bx\end{align*}. We know that \begin{align*}a = -3\end{align*} and that the period is \begin{align*}8 \pi\end{align*}. Let’s use this to find the frequency, or \begin{align*}b\end{align*}.

\begin{align*}\frac{2\pi}{b} &=8\pi \\ \frac{2\pi}{8\pi} &=b \\ \frac{1}{4} &=b\end{align*}

The equation of the curve is \begin{align*}y=-3\sin \frac{1}{4}x\end{align*}.

Review

Find the period of the following sine and cosine functions.

  1. \begin{align*}y=5\sin 3x\end{align*}
  2. \begin{align*}y=-2\cos 4x\end{align*}
  3. \begin{align*}y=-3\sin 2x\end{align*}
  4. \begin{align*}y=\cos \frac{3}{4}x\end{align*}
  5. \begin{align*}y=\frac{1}{2}\cos 2.5x\end{align*}
  6. \begin{align*}y=4\sin 3x\end{align*}

Use the equation \begin{align*}y=5\sin 3x\end{align*} to answer the following questions.

  1. Graph the function from \begin{align*}[0, 2\pi]\end{align*} and find the domain and range.
  2. Determine the coordinates of the maximum and minimum values.
  3. Find all the zeros from \begin{align*}[0, 2\pi]\end{align*}.

Use the equation \begin{align*}y=\cos \frac{3}{4}x\end{align*} to answer the following questions.

  1. Graph the function from \begin{align*}[0, 4\pi]\end{align*} and find the domain and range.
  2. Determine the coordinates of the maximum and minimum values.
  3. Find all the zeros from \begin{align*}[0, 2\pi]\end{align*}.

Use the equation \begin{align*}y=-3\sin 2x\end{align*} to answer the following questions.

  1. Graph the function from \begin{align*}[0, 2\pi]\end{align*} and find the domain and range.
  2. Determine the coordinates of the maximum and minimum values.
  3. Find all the zeros from \begin{align*}[0, 2\pi]\end{align*}.
  4. What is the domain of every sine and cosine function? Can you make a general rule for the range? If so, state it.

Write the equation of the sine function, in the form \begin{align*}y=a\sin bx\end{align*}, with the given amplitude and period.

  1. Amplitude: -2 Period: \begin{align*}\frac{3 \pi}{4}\end{align*}
  2. Amplitude: \begin{align*}\frac{3}{5}\end{align*} Period: \begin{align*}5 \pi\end{align*}
  3. Amplitude: 9 Period: 6
  4. Challenge Find all the zeros from \begin{align*}[0, 2\pi]\end{align*} of \begin{align*}y=\frac{1}{2}\sin 3\left(x-\frac{\pi}{3}\right)\end{align*}.

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 14.4. 

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Period.
Please wait...
Please wait...