<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

Transformations of Polar Graphs

Alteration of graph based on changing constants and/or function of a polar equation.

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Transformations of Polar Graphs
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In
Transformations of Polar Graphs

While playing around with your calculator one day, you create a polar plot that looks like this

Your teacher tells you that this is a polar plot with an equation 2+2sinθ. You decide you'd like to rotate the graph, so that it is actually on its side, like this

Transforming Polar Graphs

Just as in graphing on a rectangular grid, you can also graph polar equations on a polar grid.

These equations may be simple or complex. To begin, you should try something simple like r=k or θ=k where k is a constant. The solution for r=1.5 is simply all ordered pairs such that r=1.5 and θ is any real number. The same is true for the solution of θ=30. The ordered pairs will be any real number for r and θ will equal 30. Here are the graphs for each of these polar equations.

Graphing Equations 

1. On a polar plane, graph the equation r=1.5

The solution is all ordered pairs of (r,θ) such that r is always 1.5. This means that it doesn’t matter what θ is, so the graph is a circle with radius 1.5 and centered at the origin.

2. On a polar plane, graph the equation θ=30

For this problem, the r value, or radius, is arbitrary. θ must equal 30, so the result is a straight line, with an angle of elevation of 30.

To begin graphing more complicated polar equations, we will make a table of values for y=sinθ or in this case r=sinθ. When the table has been completed, the graph will be drawn on a polar plane by using the coordinates (r,θ).

3. Graph the following polar equations on the same polar grid and compare the graphs.

rr=5+5sinθ=5(1+sinθ)r=55sinθr=5(1sinθ)

The cardioid is symmetrical about the positive yaxis and the point of indentation is at the pole. The result of changing + to - is a reflection in the xaxis. The cardioid is symmetrical about the negative yaxis and the point of indentation is at the pole.

Changing the value of a′′ to a negative did not change the graph of the cardioid.

It is also possible to create a sinusoidal curve called a limaçon. It has r=a±bsinθ or r=a±bcosθ as its polar equation. Not all limaçons have the inner loop as a part of the shape. Some may curve to a point, have a simple indentation (known as a dimple) or curve outward. The shape of the limaçon depends upon the ratio of ab where a is a constant and b is the coefficient of the trigonometric function.

As we've seen with cardioids, it is possible to create transformations of graphs of limaçons by changing values of constants in the equation of the shape.

Examples

Example 1

Earlier, you were asked to graph a polar equation. 

As you've seen in this section, transformations to the graph of a cardioid can be accomplished by 2 different ways. In this case, you want to rotate the graph so that it is around the "x" axis instead of the "y" axis. To accomplish this, you change the function from a sine function to a cosine function:

r=2+2cosθ

Example 2

Graph the curve r=33cosθ

r=33cosθ

Example 3

Graph the curve r=2+4sinθ

r=2+4sinθ

Example 4

Graph the curve r=4

r=4

Review

Graph each equation.

  1. r=4
  2. θ=60
  3. r=2
  4. θ=110

Graph each function using your calculator and sketch on your paper.

  1. r=3+3sin(θ)
  2. r=2+4sin(θ)
  3. r=15sin(θ)
  4. r=22sin(θ)
  5. r=3+6sin(θ)
  6. r=3+6sin(θ)
  7. Analyze the connections between the equations and their graphs above. Make a hypothesis about how to graph \begin{align*}r=a+b\sin(\theta )\end{align*} for positive or negative values of a and b where \begin{align*}b\geq a\end{align*}.

Graph each function using your calculator and sketch on your paper.

  1. \begin{align*}r=3+3\cos(\theta )\end{align*}
  2. \begin{align*}r=2+4\cos(\theta )\end{align*}
  3. \begin{align*}r=1-5\cos(\theta )\end{align*}
  4. \begin{align*}r=2-2\cos(\theta )\end{align*}
  5. \begin{align*}r=3+6\cos(\theta )\end{align*}
  6. \begin{align*}r=-3+6\cos(\theta )\end{align*}
  7. Analyze the connections between the equations and their graphs above. Make a hypothesis about how to graph \begin{align*}r=a+b\cos(\theta )\end{align*} for positive or negative values of a and b where \begin{align*}b\geq a\end{align*}.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Transformations of Polar Graphs.
Please wait...
Please wait...