<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Transformations of Polar Graphs

Alteration of graph based on changing constants and/or function of a polar equation.

Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Transformations of Polar Graphs
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Polar Coordinates and Graphs

Feel free to modify and personalize this study guide by clicking “Customize.”

Vocabulary

Complete the chart.
Word Definition
Polar Coordinates ________________________________________________________
______________ a graph of two heart shaped loops reflected across the "x" axis
______________ a graph with a sinusoidal curve looping around the origin
Transformation ________________________________________________________

Polar Coordinates

How many radians are in a circle? _____________

How do you convert from degrees to radians? ____________________________

In your own words, explain how to graph polar points on a graph: _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

.

Name the coordinates of the points on this graph: 

A: ____________

B: ____________

C: ____________

Graph the following on a calculator:

  1.  \begin{align*}r = 1 + 3 sin \theta\end{align*}
  2. \begin{align*}r = 1 + 2 cos \theta\end{align*}
  3. \begin{align*}\left(1.5, \frac{2\pi}{3}\right)\end{align*}

Give three alternate sets of coordinates for the given point within the range \begin{align*}-360^\circ \leq\theta\leq 360^\circ\end{align*} .

  1. \begin{align*}(3, 120^\circ )\end{align*}
  2. \begin{align*}(1, 240^\circ )\end{align*}
  3. \begin{align*}(4, 345^\circ )\end{align*}

Click here for answers.

.

Distance Between Two Polar Coordinates

What is the Law of Cosines? ______________________________________

How do we have to transform the Law of Cosines to make it a distance formula for polar coordinates? _____________________________________________________

Therefore, what is the Polar Distance Formula? ______________________________________

.

Find the distance between each set of points:

  1. \begin{align*}(-3, 260^\circ )\end{align*} and \begin{align*}(2, 90^\circ )\end{align*}
  2. \begin{align*}(4, -45^\circ )\end{align*} and \begin{align*}(6, 150^\circ )\end{align*}
  3. \begin{align*}(-5, -60^\circ )\end{align*} and \begin{align*}(1, 250^\circ )\end{align*}
.
Click here for answers.
.

Transformations

Give an equation for a line on a polar graph: _______________________________

Give an equation for a circle on a polar graph: _______________________________

Graph the following polar equations on the same polar grid and compare the graphs.

\begin{align*}r & = 5 + 5 \sin \theta && r = 5 - 5 \sin \theta \\ r & = 5(1 + \sin \theta) && r = 5(1 - \sin \theta) \end{align*}

.

What are the graphs of \begin{align*}r = a \pm b \sin \theta\end{align*} or \begin{align*}r = a \pm b \cos \theta\end{align*} called? _________________________

Graph each function using your calculator and sketch on your paper.

  1. \begin{align*}r=2 -3\cos(\theta )\end{align*}
  2. \begin{align*}r=1+2\sin(\theta )\end{align*}
  3. \begin{align*}r=-2+5\cos(\theta )\end{align*}
  4. How do sine and cosine graphs differ?
.
Click here for answers.

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Plots of Polar Coordinates.
Please wait...
Please wait...