<meta http-equiv="refresh" content="1; url=/nojavascript/"> Trig Identities to Find Exact Trigonometric Values ( Read ) | Trigonometry | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Trig Identities to Find Exact Trigonometric Values

%
Best Score
Practice
Best Score
%
Practice Now

Using Trig Identities to Find Exact Trig Values

You are given the following information about \theta

\sin \theta= \frac{2}{3}, \frac{\pi}{2} < \theta < \pi

What are \cos \theta and tan\theta ?

Guidance

You can use the Pythagorean, Tangent and Reciprocal Identities to find all six trigonometric values for certain angles. Let’s walk through a few examples so that you understand how to do this.

Example A

Given that \cos \theta=\frac{3}{5} and 0 < \theta < \frac{\pi}{2} , find \sin \theta .

Solution: Use the Pythagorean Identity to find \sin \theta .

\sin^2 \theta+\cos^2 \theta&=1 \\\sin^2 \theta+ \left(\frac{3}{5}\right)^2&=1 \\\sin^2 \theta&=1- \frac{9}{25} \\\sin^2 \theta&=\frac{16}{25} \\\sin \theta&= \pm \frac{4}{5}

Because \theta is in the first quadrant, we know that sine will be positive. \sin \theta=\frac{4}{5}

Example B

Find \tan \theta of \theta from Example A.

Solution: Use the Tangent Identity to find \tan \theta .

\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}

Example C

Find the other three trigonometric functions of \theta from Example.

Solution: To find secant, cosecant, and cotangent use the Reciprocal Identities.

\csc \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{4}{5}}= \frac{5}{4} \quad \sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{3}{5}}=\frac{5}{3} \quad \cot \theta =\frac{1}{\tan \theta}=\frac{1}{\frac{4}{3}}=\frac{3}{4}

Concept Problem Revisit

First, use the Pythagorean Identity to find \cos \theta .

\sin^2 \theta+\cos^2 \theta&=1 \\(\frac{2}{3})^2 + \cos^2 \theta =1 \\\cos^2 \theta&=1- \frac{4}{9} \\\cos^2 \theta&=\frac{5}{9} \\\cos \theta&= \pm \frac{\sqrt{5}}{3}

However, because \theta is restricted to the second quadrant, the cosine must be negative. Therefore, cos \theta= -\frac{\sqrt{5}}{3} .

Now use the Tangent Identity to find \tan \theta .

\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{2}{3}}{-\frac{\sqrt{5}}{3}}=\frac{-2}{\sqrt{5}} = \frac{-2\sqrt{5}}{5}

Guided Practice

Find the values of the other five trigonometric functions.

1. \tan \theta=- \frac{5}{12}, \frac{\pi}{2} < \theta < \pi

2. \csc \theta=-8, \pi < \theta < \frac{3 \pi}{2}

Answers

1. First, we know that \theta is in the second quadrant, making sine positive and cosine negative. For this problem, we will use the Pythagorean Identity 1+ \tan^2 \theta=\sec^2 \theta to find secant.

1+ \left(- \frac{5}{12}\right)^2&=\sec^2 \theta \\1+ \frac{25}{144}&=\sec^2 \theta \\\frac{169}{144}&=\sec^2 \theta \\\pm \frac{13}{12}&=\sec \theta \\- \frac{13}{12}&=\sec \theta

If \sec \theta=- \frac{13}{12} , then \cos \theta= - \frac{12}{13} . \sin \theta=\frac{5}{13} because the numerator value of tangent is the sine and it has the same denominator value as cosine. \csc \theta=\frac{13}{5} and \cot \theta=- \frac{12}{5} from the Reciprocal Identities.

2. \theta is in the third quadrant, so both sine and cosine are negative. The reciprocal of \csc \theta=-8 , will give us \sin \theta=- \frac{1}{8} . Now, use the Pythagorean Identity \sin^2 \theta + \cos^2 \theta=1 to find cosine.

\left(- \frac{1}{8}\right)^2+ \cos^2 \theta&=1 \\\cos^2 \theta&=1- \frac{1}{64} \\\cos^2 \theta&=\frac{63}{64} \\\cos \theta&=\pm \frac{3 \sqrt{7}}{8} \\\cos \theta&=- \frac{3 \sqrt{7}}{8} \\

\sec \theta=- \frac{8}{3 \sqrt{7}}=- \frac{8 \sqrt{7}}{21}, \tan \theta= \frac{1}{3 \sqrt{7}}= \frac{\sqrt{7}}{21}, and \cot \theta=3 \sqrt{7}

Practice

  1. In which quadrants is the sine value positive? Negative?
  2. In which quadrants is the cosine value positive? Negative?
  3. In which quadrants is the tangent value positive? Negative?

Find the values of the other five trigonometric functions of \theta .

  1. \sin \theta=\frac{8}{17},0 < \theta < \frac{\pi}{2}
  2. \cos \theta=- \frac{5}{6}, \frac{\pi}{2} < \theta < \pi
  3. \tan \theta= \frac{\sqrt{3}}{4},0 < \theta < \frac{\pi}{2}
  4. \sec \theta=- \frac{41}{9}, \pi < \theta < \frac{3 \pi}{2}
  5. \sin \theta=- \frac{11}{14}, \frac{3 \pi}{2} < \theta < 2 \pi
  6. \cos \theta=\frac{\sqrt{2}}{2},0 < \theta < \frac{\pi}{2}
  7. \cot \theta= \sqrt{5}, \pi < \theta < \frac{3 \pi}{2}
  8. \csc \theta=4, \frac{\pi}{2} < \theta < \pi
  9. \tan \theta=- \frac{7}{10}, \frac{3 \pi}{2} < \theta < 2 \pi
  10. Aside from using the identities, how else can you find the values of the other five trigonometric functions?
  11. Given that \cos \theta=\frac{6}{11} and \theta is in the 2^{nd} quadrant, what is \sin(- \theta) ?
  12. Given that \tan \theta=- \frac{5}{8} and \theta is in the 4^{th} quadrant, what is \sec(- \theta) ?

Image Attributions

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...

Original text