<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Trigonometric Functions of Negative Angles

Angles measured by rotating clockwise from the positive x-axis.

Atoms Practice
Estimated13 minsto complete
%
Progress
Practice Trigonometric Functions of Negative Angles
Practice
Progress
Estimated13 minsto complete
%
Practice Now
Trigonometric Functions of Negative Angles

While practicing for the track team, you regularly stop to consider the values of trig functions for the angle you've covered as you run around the circular track at your school. Today, however, is different. To keep things more interesting, your coach has decided to have you and your teammates run the opposite of the usual direction on the track. From your studies at school, you know that this is the equivalent of a "negative angle".

You have run 45 around the track, and want to fine the value of the cosine function for this angle. Is it still possible to find the values of trig functions for these new types of angles?

Trigonometric Functions of Negative Angles

Recall that graphing a negative angle means rotating clockwise. The graph below shows 30.

Notice that this angle is coterminal with 330. So the ordered pair is (32,12). We can use this ordered pair to find the values of any of the trig functions of 30. For example, cos(30)=x=32.

In general, if a negative angle has a reference angle of 30, 45, or 60, or if it is a quadrantal angle, we can find its ordered pair, and so we can determine the values of any of the trig functions of the angle.

 

 

 

 

Find the value of the expression:

sin(45)

sin(45)=22

45 is in the 4th quadrant, and has a reference angle of 45. That is, this angle is coterminal with 315. Therefore the ordered pair is (22,22) and the sine value is 22.

Find the value of the expression:

sec(300)

sec(300)=2

The angle 300 is in the 1st quadrant and has a reference angle of 60. That is, this angle is coterminal with 60. Therefore the ordered pair is (12,32) and the secant value is 1x=112=2.

Find the value of the expression:

cos(90)

cos(90)=0

The angle 90 is coterminal with 270. Therefore the ordered pair is (0, -1) and the cosine value is 0.

We can also use our knowledge of reference angles and ordered pairs to find the values of trig functions of angles with measure greater than 360 degrees.

Examples

Example 1

Earlier, you were asked if it is still possible to find the values of trig functions for the new type of angles. 

What you want to find is the value of the expression: cos(45)

cos(45)=22

45 is in the 4th quadrant, and has a reference angle of 45. That is, this angle is coterminal with 315. Therefore the ordered pair is (22,22) and the cosine value is 22.

Example 2

Find the value of the expression: cos180

The angle 180 is coterminal with 180. Therefore the ordered pair of points is (-1, 0). The cosine is the "x" coordinate, so here it is -1.

Example 3

Find the value of the expression: sin90

The angle 90 is coterminal with 270. Therefore the ordered pair of points is (0, -1). The sine is the "y" coordinte, so here it is -1.

Example 4

Find the value of the expression: tan270

The angle 270 is coterminal with 90. Therefore the ordered pair of points is (0, 1). The tangent is the "y" coordinate divided by the "x" coordinate. Since the "x" coordinate is 0, the tangent is undefined.

Review

Calculate each value.

  1. sin120
  2. cos120
  3. tan120
  4. csc120
  5. \begin{align*}\sec -120^\circ\end{align*}
  6. \begin{align*}\cot -120^\circ\end{align*}
  7. \begin{align*}\csc -45^\circ\end{align*}
  8. \begin{align*}\sec -45^\circ\end{align*}
  9. \begin{align*}\tan -45^\circ\end{align*}
  10. \begin{align*}\cos -135^\circ\end{align*}
  11. \begin{align*}\csc -135^\circ\end{align*}
  12. \begin{align*}\sec -135^\circ\end{align*}
  13. \begin{align*}\tan -210^\circ\end{align*}
  14. \begin{align*}\sin -270^\circ\end{align*}
  15. \begin{align*}\cot -90^\circ\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 1.19. 

Vocabulary

Negative Angle

A negative angle is an angle measured by rotating clockwise (instead of counterclockwise) from the positive x axis.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Trigonometric Functions of Negative Angles.
Please wait...
Please wait...