<meta http-equiv="refresh" content="1; url=/nojavascript/"> Trigonometric Functions of Negative Angles ( Read ) | Trigonometry | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Trigonometric Functions of Negative Angles

%
Best Score
Practice Trigonometric Functions of Negative Angles
Practice
Best Score
%
Practice Now
Trigonometric Functions of Negative Angles
 0  0  0

While practicing for the track team, you regularly stop to consider the values of trig functions for the angle you've covered as you run around the circular track at your school. Today, however, is different. To keep things more interesting, your coach has decided to have you and your teammates run the opposite of the usual direction on the track. From your studies at school, you know that this is the equivalent of a "negative angle".

You have run -45^\circ around the track, and want to fine the value of the cosine function for this angle. Is it still possible to find the values of trig functions for these new types of angles?

At the completion of this Concept, you'll be able to calculate the values of trig functions for negative angles, and find the value of cosine for the -45^\circ you have traveled.

Watch This

Coterminal and Negative Angles

Guidance

Recall that graphing a negative angle means rotating clockwise. The graph below shows -30^\circ .

Notice that this angle is coterminal with 330^\circ . So the ordered pair is \left ( \frac{\sqrt{3}}{2}, -\frac{1}{2} \right ) . We can use this ordered pair to find the values of any of the trig functions of -30^\circ . For example, \cos (-30^\circ) = x = \frac{\sqrt{3}}{2} .

In general, if a negative angle has a reference angle of 30^\circ , 45^\circ , or 60^\circ , or if it is a quadrantal angle, we can find its ordered pair, and so we can determine the values of any of the trig functions of the angle.

Example A

Find the value of the expression: \sin(-45^\circ)

Solution:

\sin (-45^\circ) = -\frac{\sqrt{2}}{2}

-45^\circ is in the 4^{th} quadrant, and has a reference angle of 45^\circ . That is, this angle is coterminal with 315^\circ . Therefore the ordered pair is \left ( \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right ) and the sine value is -\frac{\sqrt{2}}{2} .

Example B

Find the value of the expression: \sec(-300^\circ)

Solution:

\sec(-300^\circ) = 2

The angle -300^\circ is in the 1^{st} quadrant and has a reference angle of 60^\circ . That is, this angle is coterminal with 60^\circ . Therefore the ordered pair is \left ( \frac{1}{2}, \frac{\sqrt{3}}{2} \right ) and the secant value is \frac{1}{x} = \frac{1}{\frac{1}{2}} = 2 .

Example C

Find the value of the expression: \cos(-90^\circ)

Solution:

\cos(-90^\circ) = 0

The angle -90^\circ is coterminal with 270^\circ . Therefore the ordered pair is (0, -1) and the cosine value is 0.

We can also use our knowledge of reference angles and ordered pairs to find the values of trig functions of angles with measure greater than 360 degrees.

Vocabulary

Negative Angle: A negative angle is an angle measured by rotating clockwise (instead of counter-clockwise) from the positive 'x' axis.

Guided Practice

1. Find the value of the expression: \cos -180^\circ

2. Find the value of the expression: \sin -90^\circ

3. Find the value of the expression: \tan -270^\circ

Solutions:

1. The angle -180^\circ is coterminal with 180^\circ . Therefore the ordered pair of points is (-1, 0). The cosine is the "x" coordinate, so here it is -1.

2. The angle -90^\circ is coterminal with 270^\circ . Therefore the ordered pair of points is (0, -1). The sine is the "y" coordinte, so here it is -1.

3. The angle -270^\circ is coterminal with 90^\circ . Therefore the ordered pair of points is (0, 1). The tangent is the "y" coordinate divided by the "x" coordinate. Since the "x" coordinate is 0, the tangent is undefined.

Concept Problem Solution

What you want to find is the value of the expression: \cos(-45^\circ)

Solution:

\cos (-45^\circ) = \frac{\sqrt{2}}{2}

-45^\circ is in the 4^{th} quadrant, and has a reference angle of 45^\circ . That is, this angle is coterminal with 315^\circ . Therefore the ordered pair is \left ( \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right ) and the cosine value is \frac{\sqrt{2}}{2} .

Practice

Calculate each value.

  1. \sin -120^\circ
  2. \cos -120^\circ
  3. \tan -120^\circ
  4. \csc -120^\circ
  5. \sec -120^\circ
  6. \cot -120^\circ
  7. \csc -45^\circ
  8. \sec -45^\circ
  9. \tan -45^\circ
  10. \cos -135^\circ
  11. \csc -135^\circ
  12. \sec -135^\circ
  13. \tan -210^\circ
  14. \sin -270^\circ
  15. \cot -90^\circ

Image Attributions

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...

Original text